Площадь криволинейной трапеции d. Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)

Мы разобрались с нахождением площади криволинейной трапеции G . Вот полученные формулы:
для непрерывной и неотрицательной функции y=f(x) на отрезке ,
для непрерывной и неположительной функции y=f(x) на отрезке .

Однако при решении задач на нахождение площади очень часто приходится иметь дело с более сложными фигурами.

В этой статье мы поговорим о вычислении площади фигур, границы которых заданы функциями в явном виде, то есть, как y=f(x) или x=g(y) , и подробно разберем решение характерных примеров.

Навигация по странице.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y) .

Теорема.

Пусть функции и определены и непрерывны на отрезке , причем для любого значения x из . Тогда площадь фигуры G , ограниченной линиями x=a , x=b , и вычисляется по формуле .

Аналогичная формула справедлива для площади фигуры, ограниченной линиями y=c , y=d , и : .

Доказательство.

Покажем справедливость формулы для трех случаев:

В первом случае, когда обе функции неотрицательные, в силу свойства аддитивности площади сумма площади исходной фигуры G и криволинейной трапеции равна площади фигуры . Следовательно,

Поэтому, . Последний переход возможен в силу третьего свойства определенного интеграла .

Аналогично, во втором случае справедливо равенство . Вот графическая иллюстрация:

В третьем случае, когда обе функции неположительные, имеем . Проиллюстрируем это:

Теперь можно переходить к общему случаю, когда функции и пересекают ось Ox .

Обозначим точки пересечения . Эти точки разбивают отрезок на n частей , где . Фигуру G можно представить объединением фигур . Очевидно, что на своем интервале попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как

Следовательно,

Последний переход справедлив в силу пятого свойства определенного интеграла.

Графическая иллюстрация общего случая.

Таким образом, формула доказана.

Пришло время перейти к решению примеров на нахождение площади фигур, ограниченных линиями y=f(x) и x=g(y) .

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y) .

Решение каждой задачи будем начинать с построения фигуры на плоскости. Это нам позволит сложную фигуру представить как объединение более простых фигур. При затруднениях с построением обращайтесь к статьям: ; и .

Пример.

Вычислить площадь фигуры, ограниченной параболой и прямыми , x=1 , x=4 .

Решение.

Построим эти линии на плоскости.

Всюду на отрезке график параболы выше прямой . Поэтому, применяем полученную ранее формулу для площади и вычисляем определенный интеграл по формуле Ньютона-Лейбница :

Немного усложним пример.

Пример.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

В чем здесь отличие от предыдущих примеров? Ранее у нас всегда были две прямых, параллельных оси абсцисс, а сейчас только одна x=7 . Сразу возникает вопрос: где взять второй предел интегрирования? Давайте для этого взглянем на чертеж.

Стало понятно, что нижним пределом интегрирования при нахождении площади фигуры является абсцисса точки пересечения графика прямой y=x и полу параболы . Эту абсциссу найдем из равенства:

Следовательно, абсциссой точки пересечения является x=2 .

Обратите внимание.

В нашем примере и по чертежу видно, что линии и y=x пересекаются в точке (2;2) и предыдущие вычисления кажутся излишними. Но в других случаях все может быть не так очевидно. Поэтому рекомендуем всегда аналитически вычислять абсциссы и ординаты точек пересечения линий.

Очевидно, график функции y=x расположен выше графика функции на интервале . Применяем формулу для вычисления площади:

Еще усложним задание.

Пример.

Вычислить площадь фигуры, ограниченной графиками функций и .

Решение.

Построим график обратной пропорциональности и параболы .

Прежде чем применять формулу для нахождения площади фигуры, нам нужно определиться с пределами интегрирования. Для этого найдем абсциссы точек пересечения линий, приравняв выражения и .

При отличных от нуля значениях x равенство эквивалентно уравнению третьей степени с целыми коэффициентами. Можете обратиться к разделу чтобы вспомнить алгоритм его решения.

Легко проверить, что x=1 является корнем этого уравнения: .

Разделив выражение на двучлен x-1 , имеем:

Таким образом, оставшиеся корни находятся из уравнения :

Теперь из чертежа стало видно, что фигура G заключена выше синей и ниже красной линии на интервале . Таким образом, искомая площадь будет равна

Рассмотрим еще один характерный пример.

Пример.

Вычислить площадь фигуры, ограниченной кривыми и осью абсцисс.

Решение.

Сделаем чертеж.

Это обычная степенная функция с показателем одна треть, график функции можно получить из графика отобразив его симметрично относительно оси абсцисс и подняв на единицу вверх.

Найдем точки пересечения всех линий.

Ось абсцисс имеет уравнение y=0 .

Графики функций и y=0 пересекаются в точке (0;0) так как x=0 является единственным действительным корнем уравнения .

Графики функций и y=0 пересекаются в точке (2;0) , так как x=2 является единственным корнем уравнения .

Графики функций и пересекаются в точке (1;1) , так как x=1 является единственным корнем уравнения . Это утверждение не совсем очевидно, но - функция строго возрастающая, а - строго убывающая, поэтому, уравнение имеет не более одного корня.

Единственное замечание: в этом случае для нахождения площади придется использовать формулу вида . То есть, ограничивающие линии нужно представить в виде функций от аргумента y , а черной линией .

Определим точки пересечения линий.

Начнем с графиков функций и :

Найдем точку пересечения графиков функций и :

Осталось найти точку пересечения прямых и :


Как видите, значения совпадают.

Подведем итог.

Мы разобрали все наиболее часто встречающиеся случаи нахождения площади фигуры, ограниченной явно заданными линиями. Для этого нужно уметь строить линии на плоскости, находить точки пересечения линий и применять формулу для нахождения площади, что подразумевает наличие навыков вычисления определенных интегралов.

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, и гиперболу .

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл.

С точки зрения геометрии определенный интеграл - это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения - построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом - параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):

На отрезке график функции расположен над осью , поэтому:

Ответ:

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:

Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:


В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ - аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .

Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура - над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой - НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

Пример 4

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие - чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов.

Действительно :

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Как вычислить объем тела вращения с помощью определенного интеграла?

Представьте некоторую плоскую фигуру на координатной плоскости. Её площадь мы уже находили. Но, кроме того, данную фигуру можно ещё и вращать, причем вращать двумя способами:

Вокруг оси абсцисс ;

Вокруг оси ординат .

В данной статье будут разобраны оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс.

Начнем с наиболее популярной разновидности вращения.

Пример1 . Вычислить площадь фигуры, ограниченной линиями: х + 2у – 4 = 0, у = 0, х = -3, и х = 2


Выполним построение фигуры (см. рис.) Строим прямую х + 2у – 4 = 0 по двум точкам А(4;0) и В(0;2). Выразив у через х, получим у = -0,5х + 2. По формуле (1), где f(x) = -0,5х + 2, а = -3, в = 2, находим

S = = [-0,25=11,25 кв. ед

Пример 2. Вычислить площадь фигуры, ограниченной линиями: х – 2у + 4 = 0, х + у – 5 = 0 и у = 0.

Решение. Выполним построение фигуры.

Построим прямую х – 2у + 4 = 0: у = 0, х = - 4, А(-4; 0); х = 0, у = 2, В(0; 2).

Построим прямую х + у – 5 = 0: у = 0, х = 5, С(5; 0), х = 0, у = 5, D(0; 5).

Найдем точку пересечения прямых, решив систему уравнений:

х = 2, у = 3; М(2; 3).

Для вычисления искомой площади разобьем треугольник АМС на два треугольника АМN и NМС, так как при изменении х от А до N площадь ограничена прямой, а при изменении х от N до С - прямой


Для треугольника АМN имеем: ; у = 0,5х + 2, т. е. f(x) = 0,5х + 2, a = - 4, b = 2.

Для треугольника NМС имеем: y = - x + 5, т. е. f(x) = - x + 5, a = 2, b = 5.

Вычислив площадь каждого из треугольников и сложив результаты, находим:

кв. ед.

кв. ед.

9 + 4, 5 = 13,5 кв. ед. Проверка: = 0,5АС = 0,5 кв. ед.

Пример 3. Вычислить площадь фигуры, ограниченной линиями: y = x 2 , y = 0, x = 2, x = 3.

В данном случае требуется вычислить площадь криволинейной трапеции, ограниченной параболой y = x 2 , прямыми x = 2 и x = 3и осью Ох(см. рис.) По формуле (1) находим площадь криволинейной трапеции


= = 6кв. ед.

Пример 4. Вычислить площадь фигуры, ограниченной линиями: у = - x 2 + 4 и у = 0

Выполним построение фигуры. Искомая площадь заключена между параболой у = - x 2 + 4 и осью Ох.


Найдем точки пересечения параболы с осью Ох. Полагая у = 0, найдем х = Так как данная фигура симметрична относительно оси Оу, то вычислим площадь фигуры, расположенной справа от оси Оу, и полученный результат удвоим: = +4x]кв. ед. 2 = 2 кв. ед.

Пример 5. Вычислить площадь фигуры, ограниченной линиями: y 2 = x, yx = 1, x = 4

Здесь требуется вычислить площадь криволинейной трапеции, ограниченной верхней ветвью параболыy 2 = x, осью Ох и прямыми x = 1иx = 4 (см. рис.)


По формуле (1), где f(x) = a = 1 и b = 4 имеем = (= кв. ед.

Пример 6 . Вычислить площадь фигуры, ограниченной линиями:y = sinx, y = 0, x = 0, x= .

Искомая площадь ограничена полуволной синусоиды и осью Ох (см. рис.).


Имеем - cosx = - cos = 1 + 1 = 2 кв. ед.

Пример 7. Вычислить площадь фигуры, ограниченной линиями: y = - 6х, у = 0 и х = 4.

Фигура расположена под осью Ох (см. рис.).

Следовательно, её площадь находим по формуле (3)


= =

Пример 8. Вычислить площадь фигуры, ограниченной линиями:y = и х = 2. Кривую y = построим по точкам (см. рис.). Таким образом, площадь фигуры находим по формуле (4)

Пример 9 .

х 2 + у 2 = r 2 .

Здесь требуется вычислить площадь, ограниченную окружностью х 2 + у 2 = r 2 , т. е. площадь круга радиуса r с центром в начале координат. Найдем четвертую часть этой площади, взяв пределы интегрирования от 0

доr; имеем: 1 = = [

Следовательно, 1 =

Пример 10. Вычислить площадь фигуры, ограниченной линиями: у= х 2 и у = 2х

Данная фигура ограничена параболой у= х 2 и прямой у = 2х (см. рис.) Для определения точек пересечения заданных линий решим систему уравнений:х 2 – 2х = 0 х = 0 и х = 2


Используя для нахождения площади формулу (5), получим

= график функции y=x 2 +2 расположен над осью Ox , поэтому:

Ответ: S =9 кв.ед.

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Что делать, если криволинейная трапеция расположена под осью Ох?

b) Вычислить площадь фигуры, ограниченной линиями y=-e x , x=1 и координатными осями.

Решение.

Выполним чертеж.

Если криволинейная трапеция полностью расположена под осью Ох , то её площадь можно найти по формуле:

Ответ: S=(e-1) кв.ед.»1,72 кв.ед.

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости.

с) Найти площадь плоской фигуры, ограниченной линиями у=2х-х 2 , у=-х.

Решение.

Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой Это можно сделать двумя способами. Первый способ - аналитический.

Решаем уравнение:

Значит, нижний предел интегрирования а=0 , верхний предел интегрирования b=3 .

Строим заданные линии: 1. Парабола - вершина в точке (1;1); пересечение с осью Ох - точки(0;0) и (0;2). 2. Прямая - биссектриса 2-го и 4-го координатных углов. А теперь Внимание! Если на отрезке [a;b ] некоторая непрерывная функция f(x) больше либо равна некоторой непрерывной функции g(x) , то площадь соответствующей фигуры можно найти по формуле: .


И не важно , где расположена фигура - над осью или под осью, а важно , какой график ВЫШЕ (относительно другого графика), а какой- НИЖЕ. В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Можно построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными).

Искомая фигура ограничена параболой сверху и прямой снизу.

На отрезке , по соответствующей формуле:

Ответ: S =4,5 кв.ед.

Введите функцию, для которой надо найти интеграл

Калькулятор предоставляет ПОДРОБНОЕ решение определённых интегралов.

Этот калькулятор находит решение определенного интеграла от функции f(x) с данными верхними и нижними пределами.

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

Sqrt(x)/(x + 1)

Кубический корень

Cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

X*arcsin(x)

Арккосинус

X*arccos(x)

Применение логарифма

X*log(x, 10)

Натуральный логарифм

Экспонента

Tg(x)*sin(x)

Котангенс

Ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

X*arctg(x)

Арккотангенс

X*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

Ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

X^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

X^2*arctgh(x)*arcctgh(x)

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание
Другие функции: floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция - округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция - Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа