Трехмерное пространство заполненное субстанцией. Как выглядело бы четвертое пространственное измерение? Плоскость в трехмерном пространстве

Трехмерное пространство – имеет три однородных измерения: высоту, ширину и длину. Это геометрическая модель нашего материального мира.

Чтобы понять природу физического пространства, вначале надо ответить на вопрос о происхождении его размерности. Поэтому значение размерности, как видно, самая значительная характеристика физического пространства.

Размерность пространства

Размерность – наиболее общее количественно выражаемое свойство пространства-времени. В настоящее время физическая теория, претендующая на пространственно-временное описание реальности, берет значение размерности в качестве исходного постулата. Понятие числа измерений, или размерности пространства, относится к наиболее фундаментальным понятиям математики и физики.


Современная физика вплотную подошла к ответу на метафизический вопрос, который был поставлен еще в работах австрийского физика и философа Эрнста Маха: «Почему пространство трехмерное?». Считается, что факт трехмерности пространства связан с фундаментальными свойствами материального мира.

Развитие процесса из точки порождает пространство, т.е. место, где должна происходить реализация программы развития. «Порождаемое пространство «есть для нас форма Вселенной, или форма материи во Вселенной».

Так считали в древности…

Еще Птолемеем было написано на тему о размерности пространства, где он утверждал, что в природе не может существовать более трех пространственных измерений. В своей книге «О небе» еще один греческий мыслитель Аристотель писал, что лишь наличие трех измерений обеспечивает совершенство и полноту мира. Одно измерение, рассуждал Аристотель, образует линию. Если добавить к линии другое измерение, получим поверхность. Дополнение поверхности еще одним измерением образует объемное тело.

Выходит, что «выйти за пределы объемного тела к чему-то другому уже нельзя, так как всякое изменение происходит в силу какого-либо недостатка, а таковой здесь отсутствует. Приведенный ход мысли Аристотеля страдает одной существенной слабостью: остается неясным, по какой причине именно трехмерное объемное тело обладает полнотой и совершенством. В свое время Галилей справедливо высмеял мнение о том, что «число «3» есть число совершенное и что оно наделено способностью сообщать совершенство всему, что обладает троичностью».

Чем определяется мерность пространства

Пространство обладает бесконечной протяженностью по всем направлениям. Однако при этом оно может быть измеряемо лишь в трех независимых друг от друга направлениях: в длину, ширину и высоту; эти направления мы называем измерениями пространства и говорим, что наше пространство имеет три измерения, что оно трехмерное. При этом «независимым направлением мы в этом случае называем линию, лежащую под прямым углом к другой. Таких линий, т.е. лежащих одновременно под прямым углом одна к другой и не параллельных между собою, наша геометрия знает лишь три. То есть мерность нашего пространства определяется количеством возможных в нем линий, лежащих под прямым углом одна к другой. На линии другой линии не может быть – это одномерное пространство. На поверхности возможны 2 перпендикуляра – это двумерное пространство. В «пространстве» три перпендикуляра – это трехмерное пространство».

Почему пространство трехмерное?

Редкий в земных условиях опыт материализации людей часто оказывают на очевидцев физическое воздействие…

Но, в представлениях о пространстве и времени есть еще много неясного, порождающего непрекращающиеся дискуссии ученых. Почему наше пространство имеет три измерения? Могут ли существовать многомерные миры? Возможно ли существование материальных объектов вне пространства и времени?

Утверждение, что физическое пространство обладает тремя измерениями, имеет столь же объективный характер, как и утверждение, к примеру, что существует три физических состояния вещества: твердое, жидкое и газообразное; оно описывает фундаментальный факт объективного мира. И. Кант подчеркнул, что причина трехмерности нашего пространства еще неизвестна. П. Эренфест и Дж. Уитроу показали, что если бы число измерений пространства было больше трех, то существование планетарных систем было бы невозможным – лишь в трехмерном мире могут существовать устойчивые орбиты планет в планетных системах. То есть трехмерный порядок материи является единственно стабильным порядком.

Но трехмерность пространства не может утверждаться как некая абсолютная необходимость. Это физический факт, подобный любому другому, и, как следствие, он подлежит тому же самому виду объяснения.

Вопрос о том, почему наше пространство трехмерное, может решаться или с позиции телеологии, исходящей из ненаучного утверждения, что «трехмерный мир самый совершенный из возможных миров», или с научноматериалистических позиций, основываясь на фундаментальных физических закономерностях.

Мнение современников

Современная физика говорит о том, что характеристика трехмерности состоит в том, что она, и только она, дает возможность формулировать для физической реальности непрерывные причинные законы. Но, «современные концепции не отражают истинного состояния физической картины мира. В наше время ученые рассматривают пространство как некую структуру, состоящую из множества уровней, которые также неопределенны. И потому не случайно современная наука не может дать ответ на вопрос, почему наше пространство, в котором мы живем и которое обозреваем – трехмерное».

Теория связанных пространств

В параллельных мирах события происходят по-своему, они могут…

«Попытки искать ответ на этот вопрос, оставаясь только в пределах математики, обречена на неудачу. Ответ может содержаться в новой малоразработанной области физики». Попробуем найти ответ на этот вопрос исходя из положений рассматриваемой физики связанных пространств.

Согласно теории связанных пространств, развитие объекта идет в три этапа, при этом каждый этап развивается вдоль своего выделенного направления, т.е. вдоль своей оси развития.

На первом этапе развитие объекта идет вдоль первоначального выделенного направления, т.е. имеет одну ось развития. На втором этапе происходит поворот системы, образованной на первом этапе, на 90°, т.е. происходит изменение направления пространственной оси, и развитие системы начинает идти вдоль второго выделенного направления, перпендикулярного первоначальному. На третьем этапе снова происходит поворот развития системы на 90°, и она начинает развиваться вдоль третьего выделенного направления, перпендикулярного первым двум. В результате образуются три вложенные друг в друга сферы пространства, каждое из которых соответствует одной из осей развития. Причем все три указанные пространства связаны в единое устойчивое образование физическим процессом.

А потому как данный процесс реализуется на всех масштабных уровнях нашего мира, то все системы, в том числе и сами координаты, построены по триадному (трехкоординатному) принципу. Отсюда следует, что в результате прохождения трех этапов развития процесса естественным образом формируется трехмерное пространство, образованное как следствие физического процесса развития тремя координатными осями трех взаимно перпендикулярных направлений развития!

Эти разумные сущности возникли на самой заре существования Вселенной…

Не зря Пифагору, который, как видно, мог обладать этим знанием, принадлежит выражение: «Все вещи состоят из трех». Об этом же говорится и у Н.К. Рериха: «Символ Триединости имеет огромную древность и встречается во всем Мире, потому он не может быть ограничен какой-либо сектой, организацией, религией или традицией, а также личными или групповыми интересами, потому как представляет эволюцию сознания во всех ее фазах… Знак триединости оказался раскинутым по всему миру… Если собрать вместе все отпечатки того же самого знака, то, возможно, он окажется самым распространенным и древнейшим среди символов человеческих. Никто не может утверждать, что этот знак принадлежит только одному верованию или основан на одном фольклоре».

Не зря еще в древние времена наш мир представлялся как триединое божество (три слитое в один): нечто одно, целое и неделимое, по своей сакральной значимости намного превосходящее исходные величины.

Мы проследили пространственную специализацию (распределение по координатным направлениям пространства) внутри отдельно взятой системы, но точно такое же распределение мы можем видеть и в любом социуме от атома до галактик. Данные три разновидности пространства являются не чем иным, как тремя координатными состояниями геометрического пространства.

Опишу математическим языком.

Рассмотрим обычное трёхмерное пространство, в котором мы живём. Мы прекрасно понимаем, что такое точка, прямая и плоскость в этом пространстве. Пересечение двух плоскостей дает нам прямую, пересечение двух прямых - точку. Каждую точку в этом пространстве можно описать тремя координатами: (x, y, z). Первая координата обычно обозначает длину , вторая - ширину , третья - высоту данной точки относительно точки начала координат. Все это легко можно проиллюстрировать и представить.

Однако четырёхмерное пространство не такое уж простое. Любую точку в этом пространстве теперь можно описать четырьмя координатами: (x, y, z, t), где добавляется новая координата t, которую в физике часто называют временем . Под этим подразумевается, что помимо длины, ширины и высоты точки указывается и её положение по времени, т. е. где она находится: в прошлом, в настоящем или в будущем.

Но отойдём от физики. Оказывается, что математически в этом пространстве добавляется новый аксиоматический объект, именуемый гиперплоскостью . Её условно можно представить как одно целое "трехмерное пространство". По аналогии в трехмерном пространстве, пересечение двух гиперплоскостей дает нам плоскость . Различные комбинации этой штуки с четырёхмерными фигурами дают нам неожиданные результаты. Например, в трехмерном пространстве пересечение плоскости с шаром дает нам круг. По этой аналогии в четырехмерном пространстве пересечение четырехмерного шара с гиперплоскостью дает нам трёхмерный шар. Становится очевидно, что практически невозможно мысленно представить и нарисовать четырёхмерное пространство: биологически наши органы чувств приспособлены лишь к трёхмерному случаю и ниже. Поэтому четырёхмерное пространство чётко можно описать только математическим языком, в основном с помощью действий с координатами точек.

Однако менее точно его кое-как можно описать и другим языком. Рассмотрим концепцию параллельных миров: помимо нашего мира "существуют" и другие миры, в котором некоторые события шли иначе. Обозначим наш мир через букву А, а некий другой мир - через букву Б. С точки зрения четырёхмерного пространства можно сказать, что мир А и мир Б - разные "трёхмерные пространства", которые оказываются не пересекающимися. Это и есть параллельные гиперплоскости . И их бесконечно много. Если случается так, что если в определены момент времени в мире А "дедушка умер", а в мире Б "дедушка все ещё жив", то миры А и Б пересекаются по некоторой четырехмерной фигуре, в которой все события шли одинаково до некоторого момента времени, а потом фигура как бы "разделилась" на непересекающиеся трехмерные части, в каждой из которой описывается состояние дедушки, жив он или нет. Это можно было бы описать в двумерном формате: была одна прямая, которая потом разделилась на две непересекающиеся линии.

Многомерные пространства - миф или реальность? Большинству из нас, или, возможно, всем нам невозможно представить мир, состоящий из более чем трех пространственных измерений. Правильно ли утверждение, что такой мир не может существовать? Или просто человеческий разум не способен вообразить дополнительные измерения - измерения, которые могут оказаться такими же реальными, как и другие вещи, которые мы не можем увидеть?

Мы достаточно часто слышим что-нибудь вроде «трехмерное пространство», или «многомерное пространство», или «четырехмерное пространство». Возможно, вы знаете, что мы живем в четырехмерном пространстве-времени. Что это означает и почему это интересно, почему математики и не только математики изучают такие пространства?

Илья Щуров - кандидат физико-математических наук, доцент кафедры высшей математики НИУ ВШЭ.

Jason Hise - Physics programmer at Ready at Dawn Studios, 4D geometry enthusiast. Автор анимированных моделей, представленных в данной статье.

ashgrowen - пикабушник, проиллюстрировавший в этой статье построение тессеракта и гиперкуба.

Давайте начнем с простого - начнем с одномерного пространства . Представим себе, что у нас есть город, который расположен вдоль дороги, и в этом городе есть только одна улица. Тогда мы можем каждый дом на этой улице закодировать одним числом - у дома есть номер, и этот номер однозначно определяет, какой дом имеется в виду. Люди, которые живут в таком городе, - можно считать, что они живут в таком одномерном пространстве. Жить в одномерном пространстве довольно скучно, и люди обычно живут не в одномерном пространстве.

Например, если мы говорим про города, то можно перейти от одномерного пространства к двумерному. Примером двумерного пространства является плоскость, а если мы продолжим нашу аналогию с городами, то это город, в котором можно расчертить улицы, допустим, перпендикулярно друг другу, как это сделано в Нью-Йорке, в центре Нью-Йорка. Там есть «стрит» и авеню, каждая из которых имеет свой номер, и вы можете задавать местоположение на плоскости, задавать два числа. Опять же, все мы знаем декартову систему координат, знакомую со школы, - каждая точка задается двумя числами. Это пример двумерного пространства .

Но если мы говорим про город типа центра Нью-Йорка, то на самом деле он является трехмерным пространством, потому что вам мало задать, например, конкретный дом, пусть даже вы зададите его пересечением какой-нибудь «стрит» и какой-нибудь авеню, - вам нужно будет задать еще и этаж, на котором находится нужная вам квартира. Это даст вам третье измерение - высоту. У вас получится трехмерное пространство , в котором каждая точка задается тремя числами.

Вопрос: что такое четырехмерное пространство ? Представить его себе не так-то просто, но можно думать о том, что это пространство, в котором каждая точка задается четырьмя числами. На самом деле мы с вами действительно живем в четырехмерном пространстве-времени, потому что события нашей жизни кодируются как раз четырьмя числами - помимо положения в пространстве, есть еще и время. Например, если вы назначаете свидание, то вы можете сделать это так: вы можете указать три числа, которые будут соответствовать точке в пространстве, и обязательно указать время, которое обычно задается в часах, минутах, секундах, но можно было бы закодировать его одним числом. Например, количество секунд, прошедших с определенной даты, - это тоже одно число. Таким образом получается четырехмерное пространство-время.

Представить себе геометрию этого четырехмерного пространства-времени не очень просто. Например, мы с вами привыкли к тому, что в нашем обычном трехмерном пространстве две плоскости могут пересекаться по прямой либо быть параллельными. Но не бывает такого, чтобы две плоскости пересекались в одной точке. Две прямые могут пересечься в одной точке, а на плоскости не могут в трехмерном пространстве. А в четырехмерном пространстве две плоскости могут и чаще всего пересекаются в одной точке. Можно представлять себе, хотя это уже совсем сложно, пространство большей размерности. На самом деле математики, когда работают с пространствами высокой размерности, чаще всего говорят просто: допустим, пятимерное пространство - это пространство, в котором точка задается пятью числами, пятью координатами. Безусловно, математики разработали разные методы, которые позволяют понимать что-то о геометрии такого пространства.

Почему это важно? Зачем понадобились такие пространства? Во-первых, четырехмерное пространство нам важно, потому что оно применяется в физике, потому что мы в нем живем. А зачем нужны пространства более высоких измерений? Давайте представим себе, что мы изучаем какие-то объекты, которые обладают большим количеством параметров. Например, мы изучаем страны, и у каждой страны есть территория, количество населения, внутренний валовой продукт, количество городов, какие-нибудь коэффициенты, индексы, что-нибудь такое. Мы можем представлять себе каждую страну в виде одной точки в каком-то пространстве достаточно высокой размерности. И оказывается, что с математической точки зрения это правильный способ об этом думать.

В частности, переход к геометрии многомерного пространства позволяет анализировать разные сложные объекты, обладающие большим количеством параметров.


Для того чтобы изучать такие объекты, используются методы, разработанные в науке, которая называется линейная алгебра. Несмотря на то, что она алгебра, на самом деле это наука о геометрии многомерных пространств. Конечно, поскольку представить их себе довольно тяжело, математики используют формулы, для того чтобы как раз изучать такие пространства.

Представить себе четырех-, пяти- или шестимерное пространство довольно сложно, но математики не боятся трудностей, и им мало даже стомерных пространств. Математики придумали бесконечномерное пространство - пространство, содержащее бесконечное количество измерений. В качестве примера такого пространства можно привести пространство всех возможных функций, заданных на отрезке или прямой.

Оказывается, что методы, которые были разработаны для конечномерных пространств, во многом переносятся и на случаи чрезвычайно сложных с точки зрения просто попытки их все представить пространств.

У линейной алгебры есть многочисленные приложения не только в математике, но и в самых разных науках, начиная c физики и заканчивая, например, экономикой или политической наукой. В частности, линейная алгебра является основой для многомерной статистики, которая как раз используется для вычленения связей между различными параметрами в каких-то массивах данных. В частности, популярный ныне термин Big Data зачастую связывается с решением задач по обработке данных, которые представляются именно большим количеством точек в пространстве какой-то конечной размерности. Чаще всего такие задачи можно переформулировать и разумно воспринимать именно в геометрических терминах.

Со школьных лет математика разделяется на алгебру и геометрию. Но на самом деле, если мы задумаемся о том, как устроена современная математика, то мы поймем, что те задачи, которые сейчас решаются, в частности, с применением методов линейной алгебры, на самом деле являются очень отдаленным продолжением тех задач, над которыми задумывались многие тысячи лет назад, например Пифагор или Евклид , разрабатывая ту самую школьную геометрию, которая сейчас есть в любом школьном учебнике. Удивительно, что задача по анализу больших данных оказывается в некотором смысле потомком, казалось бы, совсем бессмысленных - по крайней мере с практической точки зрения - упражнений древних греков по рисованию прямых или окружностей на плоскости или мысленному проведению прямых или плоскостей в трехмерном пространстве.

Что такое четырёхмерное пространство («4D»)?

Тессерракт - четырехмерный куб

Всем знакомо сокращение 3D , означающее «трёхмерный» (буква D - от слова dimension - измерение ). Например, выбирая в кинотеатре фильм с пометкой 3D, мы точно знаем: для просмотра придётся надеть специальные очки, но зато картинка будет не плоской, а объёмной. А что такое 4D? Существует ли «четырёхмерное пространство» в реальности? И можно ли выйти в «четвёртое измерение» ?

Чтобы ответить на эти вопросы, начнём с самого простого геометрического объекта - точки. Точка нульмерна. У неё нет ни длины, ни ширины, ни высоты.

Сдвинем теперь точку по прямой на некоторое расстояние. Допустим, что наша точка - остриё карандаша; когда мы её сдвинули, она прочертила отрезок. У отрезка есть длина, и больше никаких измерений: он одномерен. Отрезок «живёт» на прямой; прямая является одномерным пространством.

Тессеракт - четырехмерный куб

Возьмём теперь отрезок и попробуем его сдвинуть так, как раньше точку. Можно представить себе, что наш отрезок - это основание широкой и очень тонкой кисти. Если мы выйдем за пределы прямой и будем двигаться в перпендикулярном направлении, получится прямоугольник. У прямоугольника есть два измерения - ширина и высота. Прямоугольник лежит в некоторой плоскости. Плоскость - это двумерное пространство (2D), на ней можно ввести двумерную систему координат - каждой точке будет соответствовать пара чисел. (Например, декартова система координат на школьной доске или широта и долгота на географической карте.).

Если сдвинуть прямоугольник в направлении, перпендикулярном плоскости, в которой он лежит, получится «кирпичик» (прямоугольный параллелепипед) - трёхмерный объект, у которого есть длина, ширина и высота; он расположен в трёхмерном пространстве, в таком, в каком живём мы с вами. Поэтому мы хорошо представляем себе, как выглядят трёхмерные объекты. Но если бы мы жили в двумерном пространстве - на плоскости, - нам пришлось бы изрядно напрячь воображение, чтобы представить себе, как можно сдвинуть прямоугольник, чтобы он вышел из той плоскости, в которой мы живём.

Тессеракт - четырехмерный куб

Представить себе четырёхмерное пространство для нас также довольно непросто, хотя очень легко описать математически. Трёхмерное пространство - это пространство, в котором положение точки задаётся тремя числами (например, положение самолёта задаётся долготой, широтой и высотой над уровнем моря). В четырёхмерном же пространстве точке соответствует четвёрка чисел-координат. «Четырёхмерный кирпич» получается сдвигом обычного кирпичика вдоль какого-то направления, не лежащего в нашем трёхмерном пространстве; он имеет четыре измерения.

На самом деле мы сталкиваемся с четырёхмерным пространством ежедневно: например, назначая свидание, мы указываем не только место встречи (его можно задать тройкой чисел), но и время (его можно задавать одним числом, например количеством секунд, прошедших с определенной даты). Если посмотреть на настоящий кирпич, у него есть не только длина, ширина и высота, но ещё и протяженность во времени - от момента создания до момента разрушения.

Физик скажет, что мы живём не просто в пространстве, а в пространстве-времени; математик добавит, что оно четырёхмерно. Так что четвёртое измерение ближе, чем кажется.

Представление других измерений

От 2D к 3D

Ранняя попытка объяснить концепцию дополнительных измерений появилась в 1884 году с публикацией романа о плоской земле Эдвина А. Эббота «Флатландия: романтика множества измерений «. Действие в романе разворачивается в плоском мире, называемом «Флатландия», а повествование ведется от лица жителя этого мира — квадрата. Однажды во сне квадрат оказывается в одномерном мире — Лайнландии, жители которой (треугольники и другие двумерные объекты представлены в виде линий) и пытается объяснить правителю этого мира существование 2-го измерения, однако, приходит к выводу о том, что его невозможно заставить выйти за рамки мышления и представления только прямых линий.

Квадрат описывает его мир как плоскость, населенную линиями, кругами, квадратами, треугольниками и пятиугольниками.

Однажды перед квадратом появляется шар, но его суть он не может постичь, так как квадрат в своем мире может видеть только срез сферы, только форму двумерного круга.

Сфера пытается объяснить квадрату устройство трехмерного мира, но квадрат понимает только понятия «вверх/вниз» и «лево/право», он не способен постичь понятия «вперед/назад».

Только после того, как сфера вытащит квадрат из его двумерного мира в свой трехмерный мир, он наконец поймет концепцию трех измерений. С этой новой точки зрения квадрат становится способен видеть формы своих соотечественников.

Квадрат, вооруженный своим новым знанием, начинает осознавать возможность существования четвертого измерения. Также он приходит к мысли, что число пространственных измерений не может быть ограничено. Стремясь убедить сферу в этой возможности, квадрат использует ту же логику, что и сфера, аргументирующая существование трех измерений. Но теперь из них двоих становится «близорукой» сфера, которая не может понять этого и не принимает аргументы и доводы квадрата — так же, как большинство из нас «сфер» сегодня не принимают идею дополнительных измерений.

Рецензия на книгу Флатландия

Принимая во внимание исключительность как жанра, который при некоторой фантазии и существовании иных его представителей, можно было бы назвать математическим романом, так и самой книги, её не хочется сильно ругать. Тем не менее, похвалы здесь заслуживает только лишь непривычность подачи, по духу близкая произведениям Льюиса Керрола, однако, в отличие от него, имеющая гораздо меньше точек соприкосновения с реальной жизнью. Данная книга, как верно отмечено в предисловии к изданию, не похожа ни на одну популяризацию, читателю, однако, не вполне ясно, по какой причине её сравнивают с популяризациями, потому как, хотя математические истины в ней, безусловно, затрагиваются, какой бы то ни было популяризацией книгу определённо считать невозможно. И вот почему: Перед вами уникальный пример объединения художественного вымысла с математическими идеями. И поклоннику математики, любящему читать, задумка изначально кажется замечательной: подобно математическим постулатам, ввести в рассмотрение ряд абстрактных объектов, наделить их определёнными свойствами, задать правила игры в описанном пространстве, а после, подражая опять же мысли исследователя, наблюдающего взаимодействия этих умозрительных объектов, проследить за их трансформацией. Но, так как книга всё же художественная, усилиям воли учёного места здесь не находится, поэтому для самодостаточности представленного на всеобщее обозрение мира объекты здесь наделяются сознанием и мотивацией для каких-либо взаимодействий друг с другом, после чего в прежде абстрактный мир оторванных от повседневной жизни чистых идей приносятся социальные взаимодействия с целым ворохом проблем, всегда сопутствующих всяким взаимоотношениям. Всевозможные трения, возникающие в книге на социальной почве, по мнению зрителя совершенно не нужны в книге: они практически не раскрыты и не могут восприниматься в серьезе, и в то же время отвлекают читателя от истинно тех вещей, ради которых написана книга. Даже принимая во внимания заверения обоих авторов о неспешности повествования, якобы более комфортную для читателя при приобретении каких-либо знаний (именно здесь приводится сравнение с популяризациями), зрителю темп повествования показался чрезвычайно затянутым и медлительным, а повторение одного и того же объяснения по несколько раз одними и теми же словами заставило усомниться в том, что рассказчик адекватно оценивает его умственным способности. И в конечном счёте неясно, для кого эта книга. Непривычным к математике людям описание в общем-то интересных явление в столь вольной форме вряд ли принесёт удовольствие, знакомым же с математикой ближе будет гораздо приятнее взять в руки качественную популяризацию, где величие и красоту математики не разбавляют плоскими сказками.

От 3D к 4D

Нам сложно принять эту идею, потому что, когда мы пытаемся представить даже одно дополнительное пространственное измерение — мы упираемся в кирпичную стену понимания. Похоже, что наш разум не может выйти за эти границы.

Представьте себе, например, что вы находитесь в центре пустой сферы. Расстояние между вами и каждой точкой на поверхности сферы равно. Теперь попробуйте двигаться в направлении, которое позволяет вам отойти от всех точек на поверхности сферы, сохраняя при этом равноудаленность. Вы не сможете этого сделать..

Житель Флатландии столкнулся бы с такой же проблемой, если бы он находился в центре круга. В его двумерном мире он не может находиться в центре круга и двигаться в направлении, которое позволяет ему оставаться равноудаленными каждой точке окружности круга, если только он не перейдет в третье измерение. Увы, у нас нет проводника в четырехмерное пространство как в романе Эббота, чтобы показать нам путь к 4D.

Что такое гиперкуб? Построение тессеракта

Виды гиперкубов и их названия

1. Точка - нулевое измерение

2. Отрезок - одномерное пространство

3. Квадрат - двумерное пространство (2D)

4. Куб - трёхмерное пространство (3D)

5. Тессеракт - четырёхмерное пространство (4D)

Гиперкуб — это обобщающее название куба в производном числе измерений. Всего измерений десять, плюс точка (нулевое измерение).

Соответственно, существует одиннадцать видов гиперкуба. Рассмотрим построение тессеракта — гиперкуба четвертого измерения:

Для начала построим точку А (рис. 1):

После, соединим ее с точкой В. Получим вектор АВ (рис. 2):

Построим вектор, параллельный вектору АВ, и назовем его CD. Соединив начала и концы векторов, получим квадрат ABDC (рис. 3):

Теперь построим еще один квадрат A1B1D1C1, который лежит в параллельной плоскости. Соединив точки подобным образом, получим куб (рис. 4):

У нас есть куб. Представьте, что положение куба в трехмерном пространстве с течением времени изменилось. Зафиксируем его новое местоположение (рис 5.):

А теперь, мы проводим вектора, которые соединяют местоположение точек в прошлом и в настоящем. Получаем тессеракт (рис. 6):

Рис. 6 Тессеракт (построение)

Подобным образом строятся остальные гиперкубы, конечно же учитывается смысл пространства, в котором гиперкуб находится.

Как насчет 10D?

В 1919 году польский математик Теодор Калуца предположил, что существование четвертого пространственного измерения может увязать между собой общую теорию относительности и электромагнитную теорию. Идея, впоследствии усовершенствованная шведским математиком Оскаром Кляйном , заключалась в том, что пространство состояло как из «расширенных» измерений, так и из «свернутых» измерений. Расширенные измерения — это три пространственных измерения, с которыми мы знакомы, и свернутое измерение находится глубоко в расширенных размерах. Эксперименты позже показали, что свернутое измерение Калуцы и Кляйна не объединило общую теорию относительности и электромагнитную теорию, как это первоначально предполагалось, но спустя десятилетия теоретики теории струн нашли эту идею полезной, даже необходимой.

Математика, используемая в теории суперструн, требует не менее 10 измерений. То есть для уравнений, описывающих теорию суперструн и для того чтобы связать общую теорию относительности с квантовой механикой, для объяснения природы частиц, для объединения сил и т. д. — необходимо использовать дополнительные измерения. Эти измерения, по мнению теоретиков струн, завернуты в свернутое пространство, изначально описанное Калуцей и Кляйном.

Круги представляют собой дополнительный пространственный размер, свернутый в каждую точку нашего знакомого трехмерного пространства. │ WGBH / NOVA

Чтобы расширить скрученное пространство, чтобы включить эти добавленные размеры, представьте, что круги Калуцы-Клейна заменяются сферами. Вместо одного добавленного измерения мы имеем два, если рассматривать только поверхности сфер и три, если учесть пространство внутри сферы. Получилось всего шесть измерений. Так где же другие, которые требует теория суперструн?

Оказывается, что до того, как появилась теория суперструн, два математика Эудженио Калаби из Университета Пенсильвании и Шин-Тунг Яу из Гарвардского университета описали шестимерные геометрические формы. Если мы заменим сферы в скрученном пространстве этими формами Калаби-Яу, мы получим 10 измерений: три пространственных, а также шестимерные фигуры Калаби-Яу .

Шестимерные формы Калаби-Яу могут объяснять дополнительные размеры, требуемые теорией суперструн. │ WGBH / NOVА

Приверженцы теории струн делают ставку на то, что дополнительные измерения действительно существуют. На самом деле, уравнения, описывающие теорию суперструн, предполагают вселенную с не менее чем 10 измерениями. Но даже физикам, которые все время думают о дополнительных пространственных измерениях сложно описать как они могут выглядеть, или как люди могли бы приблизиться к их пониманию.

Если теория суперструн будет доказана и идея мира, состоящего из 10 или более измерений, подтвердится, то появится ли когда-нибудь объяснение или визуальное представление более высоких измерений, которые сможет постичь человеческий разум? Ответ на этот вопрос навсегда может стать отрицательным, если только какая-то четырехмерная жизненная форма не «вытащит» нас из нашего трехмерного мира и не даст нам увидеть мир с ее точки зрения.

Общеизвестно, что мир, в котором мы живем, трехмерен. Окружающее нас пространство обладает тремя измерениями — длиной, шириной и высотой. Ну, а если бы наш мир имел больше трех измерений? Как повлияло бы «лишнее» измерение на течение различных физических процессов?

На страницах современных научно-фантастических произведений довольно часто можно встретиться с почти мгновенным преодолением огромных космических расстояний с помощью так называемой «нуль-транспортировки» или перехода через «гиперпространство», или «подпространство», или «надпространство».

Что имеют в виду фантасты? Ведь хорошо известно, что максимальной скоростью, с которой могут перемещаться любые реальные тела, является скорость света в пустоте, и то практически она недостижима. О каких же «скачках» через миллионы и сотни миллионов световых лет может идти речь? Разумеется, идея эта — фантастическая. Однако в ее основе лежат довольно интересные физико-математические соображения.

Начнем с того, что представим себе одномерное существо-точку, живущее в одномерном пространстве, т. е. на прямой линии. В этом «тесном» мире имеются только одно измерение — длина и только два возможных направления — вперед и назад.

У двумерных воображаемых существ, «плоскатиков», возможностей значительно больше. Они уже могут перемещаться в двух измерениях, в их мире помимо длины есть еще и ширина. Но они точно так же не способны выйти в третье измерение, как и существа-точки не могут «выпрыгнуть» за пределы своей прямой линии. Одномерные и двумерные обитатели в принципе могут прийти к теоретическому заключению о возможности существования большего числа измерений, но путь в следующее измерение для них закрыт.

По обе стороны от плоскости расположено трехмерное пространство, в котором обитаем мы, трехмерные существа, неведомые для двумерного жителя, заключенного в свой двумерный мир: ведь даже видеть он может только в пределах своего пространства. Ввиду этого о существовании трехмерного мира и его обитателей двумерный житель мог бы узнать только в том случае, если бы какой-нибудь человек, к примеру, проткнул плоскость пальцем. Но и тогда двумерное существо могло бы наблюдать только двумерную область соприкосновения между пальцем и плоскостью. Вряд ли этого было бы достаточно, чтобы сделать какие-то заключения о «потустороннем», с точки зрения двумерного жителя, трехмерном пространстве и его «таинственных» обитателях.

Но точно такое же рассуждение можно провести и для нашего трехмерного пространства, если бы оно было заключено в каком-то еще более обширном, четырехмерном пространстве, подобно тому как двумерная поверхность заключена в нем самом.

Однако выясним сперва, что вообще представляет собой четырехмерное пространство. В трехмерном пространстве существуют три взаимно перпендикулярных «основных» измерения — «длина», «ширина» и «высота» (три взаимно перпендикулярных направления осей координат). Если бы к этим трем направлениям можно было добавить четвертое, также перпендикулярное к каждому из них, то пространство имело бы четыре измерения, было бы четырехмерным.

С точки зрения математической логики рассуждение о четырехмерном пространстве абсолютно безукоризненно. Но само по себе оно ничего не доказывает, поскольку логическая непротиворечивость еще не является доказательством существования в физическом смысле. Такое доказательство способен дать только опыт. А опыт свидетельствует о том, что в нашем пространстве через одну точку можно провести лишь три взаимно перпендикулярные прямые линии.

Обратимся еще раз к помощи «плоскатиков». Для этих существ третье измерение (в которое они не могут выйти) — все равно что для нас четвертое. Однако есть и существенная разница между воображаемыми плоскими существами «плоскатиками» и нами, обитателями трехмерного пространства. В то время как плоскость является двумерной частью реально существующего трехмерного мира, все имеющиеся в нашем распоряжении научные данные убедительно свидетельствуют о том, что мир, в котором мы живем, геометрически трехмерен и не является частью какого-то четырехмерного мира. Если бы такой четырехмерный мир действительно существовал, то в нашем трехмерном мире могли бы про- , исходить некоторые «странные» явления.

Вернемся снова к двумерному плоскому миру. Хотя его обитатели и не могут выходить за пределы плоскости, все же, благодаря наличию внешнего трехмерного мира, некоторые явления, в принципе, могут здесь протекать с выходом в третье измерение. Это обстоятельство в ряде случаев делает возможным такие процессы, которые в самом по себе двумерном мире не могли бы происходить.

Представим себе, например, нарисованный в плоскости обыкновенный циферблат от часов. Какими бы способами мы ни вращали и перемещали этот циферблат, оставаясь в плоскости, нам никогда не удастся изменить направление расположения цифр так, чтобы они следовали друг за другом против часовой стрелки. Этого можно добиться, лишь «изъяв» циферблат из плоскости в трехмерное пространство, перевернув его, а затем снова возвратив в нашу плоскость.

В трехмерном пространстве подобной операции соответствовала бы, например, такая. Можно ли перчатку, предназначенную для правой руки, путем одних только перемещений в пространстве (т. е. не выворачивая наизнанку) превратить в перчатку для левой руки? Каждый легко может убедиться в том, что подобная операция неосуществима. Однако при наличии четырехмерного пространства этого можно было бы достичь так же просто, как и в случае с циферблатом.

Мы не знаем выхода в четырехмерное пространство. Но дело не только в этом. Его, видимо, не знает и природа. Во всяком случае, никаких явлений, которые можно было бы объяснить существованием четырехмерного мира, охватывающего наш трехмерный, мы не знаем.

Если бы четырехмерное пространство и выход в него действительно существовали, открывались бы удивительные возможности.

Представим себе «плоскатика», которому необходимо преодолеть расстояние между двумя точками плоского мира, отстоящими друг от друга, скажем, на 50 км. Если «плоскатик» перемещается со скоростью один метр в сутки, то подобное путешествие займет более ста лет. Но представьте себе, что двумерная поверхность свернута в трехмерном пространстве таким образом, что точки начала и конца маршрута оказались друг от друга на расстоянии всего лишь одного метра. Теперь их отделяет друг от друга совсем небольшое расстояние, которое «плоскатик» мог бы преодолеть всего за одни сутки. Но этот метр лежит в третьем измерении! Это и была бы «нуль-транспортировка», или «гиперпереход».

Аналогичная ситуация могла бы возникнуть и в искривленном трехмерном мире...

Как показала общая теория относительности, наш мир действительно обладает кривизной. Об этом мы уже знаем. И если бы еще существовало четырехмерное пространство, в которое погружен наш трехмерный мир, то для преодоления некоторых гигантских космических расстояний достаточно было бы «перескочить» через разделяющую их четырехмерную щель. Вот что имеют в виду писатели-фантасты.

Таковы соблазнительные преимущества четырехмерного мира. Но есть у него и «недостатки». Оказывается, с ростом числа измерений уменьшается устойчивость движения. Многочисленные исследования показывают, что в двумерном пространстве вообще никакое возмущение не может нарушить равновесия и удалить тело, движущееся по замкнутой траектории вокруг другого тела, в бесконечность. В пространстве трех измерений ограничения уже значительно слабее, но все же и здесь траектория движущегося тела не уходит в бесконечность, если только возмущающая сила не слишком велика.

Но уже в четырехмерном пространстве все круговые траектории становятся неустойчивыми. В таком пространстве планеты не могли бы обращаться вокруг Солнца — они либо упали бы на него, либо улетели в бесконечность.

Используя уравнения квантовой механики, можно также показать, что в пространстве, обладающем более чем тремя измерениями, не мог бы существовать как устойчивое образование и атом водорода. Происходило бы неизбежное падение электрона на ядро.

Добавление четвертого измерения изменило бы и некоторые чисто геометрические свойства пространства. Одним из важных разделов геометрии, который представляет не только теоретический, но и большой практический интерес, является так называемая теория преобразований. Речь идет о том, как изменяются различные геометрические фигуры при переходе от одной системы координат к другой. Один из типов таких геометрических преобразований носит наименование конформных. Так называются преобразования, сохраняющие углы.

Точнее, дело обстоит следующим образом. Представьте себе какую-нибудь простую геометрическую фигуру, скажем, квадрат или многоугольник. Наложим на него произвольную сетку линий, своеобразный «скелет». Тогда конформными мы назовем такие преобразования системы координат, при которых наш квадрат или многоугольник перейдет в любую другую фигуру, но так, что углы между линиями «скелета» при этом сохранятся. Наглядным примером конформного преобразования может служить перенесение поверхности глобуса на плоскость — именно так строятся географические карты.

Еще в прошлом столетии математик Б. Риман показал, что любая плоская сплошная (т. е. без «дыр», или, как говорят математики, односвязная) фигура может быть конформно преобразована в круг.

Вскоре современник Римана Ж. Лиувилль доказал еще одну важную теорему о том, что не всякое трехмерное тело можно конформно преобразовать в шар.

Таким образом, в трехмерном пространстве возможности конформных преобразований далеко не так широки, как в плоскости. Добавление всего лишь одной оси координат накладывает на геометрические свойства пространства весьма жесткие дополнительные ограничения.

Не потому ли реальное пространство именно трехмерно, а не двумерно или, скажем, пятимерно? Может быть, как раз все дело в том, что двумерное пространство слишком свободно, а геометрия пятимерного мира, наоборот, чересчур жестко «закреплена»? А в самом деле, почему? Почему пространство, в котором мы живем, трехмерно, а не четырехмерно или пятимерно?

Многие ученые пытались ответить на этот вопрос, исходя из общих философских соображений. Мир должен обладать совершенством, утверждал Аристотель, и только три измерения способны это совершенство обеспечить.

Однако конкретные физические проблемы не могут быть решены подобными методами.

Следующий шаг был сделан Галилеем, отметившим тот опытный факт, что в нашем мире могут существовать самое большее три взаимно перпендикулярных направления. Однако выяснением причин подобного положения вещей Галилей не занимался.

Сделать это пытался Лейбниц с помощью чисто геометрических доказательств. Но и такой путь малоэффективен, поскольку эти доказательства строились умозрительно, без связи с окружающим миром.

Между тем то или иное число измерений — это физическое свойство реального пространства, и оно должно иметь вполне определенные физические причины, быть следствием каких-то глубоких физических закономерностей.

Вряд ли эти причины можно вывести из тех или иных положений современной физики. Ведь свойство трехмерности пространства лежит в самом фундаменте, в самой основе всех существующих физических теорий. Видимо, решение этой задачи станет возможным лишь в рамках более общей физической теории будущего.

И, наконец, последний вопрос. В теории относительности идет речь о четырехмерном пространстве Вселенной. Но это не совсем то четырехмерное пространство, о котором говорилось выше.

Начнем с того, что четырехмерное пространство теории относительности — это не обычное пространство. Четвертым измерением здесь является время. Как мы уже говорили, теория относительности установила тесную связь между пространством и материей. Но не только. Оказалось, что непосредственно связаны между собой также материя и время, а следовательно, пространство и время. Имея в виду эту зависимость, известный математик Г. Минковский, работы которого легли в основу теории относительности, говорил: «Отныне пространство само по себе и время само по себе должны стать тенями и только особого рода их сочетание сохранит самостоятельность». Минковский предложил использовать для математического выражения зависимости пространства и времени условную геометрическую модель, четырехмерное «пространство — время». В этом условном пространстве по трем основным осям откладываются, как обычно, интервалы длины, по четвертой же оси — интервалы времени.

Таким образом, четырехмерное «пространство — время» теории относительности является всего-навсего математическим приемом, позволяющим в удобной форме описывать различные физические процессы. Поэтому говорить, что мы живем в четырехмерном пространстве, можно лишь в том смысле, что все происходящие в мире события совершаются не только в пространстве, но и во времени.

Разумеется, в любых математических построениях, даже самых абстрактных, находят свое выражение какие-то стороны объективной действительности, какие-то отношения между реально существующими предметами и явлениями. Но было бы грубой ошибкой ставить знак равенства между вспомогательными математическими аппаратами, а также применяемой в математике условной терминологией и объективной реальностью.

В свете этих соображений становится ясно, что утверждать, ссылаясь при этом на теорию относительности, будто бы наш мир четырехмерен,— приблизительно то же самое, что отстаивать идею, будто темные пятна на Луне заполнены водой, на том основании, что астрономы называют их морями.

Так что «нуль-транспортировка», по крайней мере на современном уровне развития науки, к сожалению, осуществима лишь на страницах фантастических романов.

Сколько измерений имеет пространство мира, в котором мы живем?

Что за вопрос! Конечно, три — скажет обычный человек и будет прав. Но есть еще особая порода людей, имеющих благоприобретенное свойство сомневаться в очевидных вещах. Эти люди называются «учеными», поскольку их специально этому учат. Для них наш вопрос не так прост: измерение пространства — вещь трудноуловимая, их нельзя просто пересчитать, показывая пальцем: один, два, три. Нельзя измерить их число и каким-нибудь прибором вроде линейки или амперметра: пространство имеет 2,97 плюс-минус 0,04 измерения. Приходится продумывать этот вопрос глубже и искать косвенные способы. Такие поиски оказались плодотворным занятием: современная физика считает, что число измерений реального мира тесно связано с самыми глубокими свойствами вещества. Но путь к этим идеям начался с пересмотра нашего обыденного опыта.

Обычно говорят, что мир, как и всякое тело, имеет три измерения, которым соответствуют три разных направления, скажем, «высота», «ширина» и «глубина». Кажется ясным, что «глубина», изображенная на плоскости рисунка, сводится к «высоте» и «ширине», является в некотором смысле их комбинацией. Так же ясно, что в реальном трехмерном пространстве все мыслимые направления сводятся к каким-то трем заранее выбранным. Но что означает «сводятся», «являются комбинацией»? Где будут эти «ширина» и «глубина», если мы окажемся не в прямоугольной комнате, а в невесомости где-нибудь между Венерой и Марсом? Наконец, кто поручится, что «высота», скажем, в Москве и Нью-Йорке — это одно и то же «измерение»?

Беда в том, что мы уже знаем ответ к задаче, которую пытаемся решить, а это далеко не всегда полезно. Вот если бы оказаться в мире, число измерений которого заранее не известно, и отыскивать их по одному… Или, по крайней мере, так отрешиться от наличных знаний о действительности, чтобы посмотреть на ее первоначальные свойства совсем по-новому.

Булыжник — орудие математика

В 1915 году французский математик Анри Лебег придумал, как определить число измерений пространства, не пользуясь понятиями высоты, ширины и глубины. Чтобы понять его идею, достаточно внимательно посмотреть на брусчатую мостовую. На ней легко можно найти места, где камни сходятся по три и по четыре. Можно замостить улицу квадратными плитками, которые будут примыкать друг к другу по две или по четыре; если взять одинаковые треугольные плитки, они будут примыкать по две или по шесть. Но ни один мастер не сможет замостить улицу так, чтобы булыжники везде примыкали друг к другу только по два. Это настолько очевидно, что смешно и предполагать обратное.

Математики отличаются от нормальных людей именно тем, что замечают возможность таких абсурдных предположений и умеют делать из них выводы. В нашем случае Лебег рассуждал так: поверхность мостовой, безусловно, двумерна. В то же время на ней неизбежно есть точки, где сходятся по меньшей мере три булыжника. Попробуем обобщить это наблюдение: скажем, что размерность какой-то области равна N, если при ее замощении не удается избежать соприкосновений N + 1 или большего числа «булыжников». Теперь трехмерность пространства подтвердит любой каменщик: ведь при выкладывании толстой, в несколько слоев стены обязательно будут точки, где соприкоснутся не менее чем четыре кирпича!

Однако на первый взгляд кажется, что к лебеговскому определению размерности можно найти, как выражаются математики, «контрпример». Это дощатый пол, в котором половицы соприкасаются ровно по две. Чем не замощение? Поэтому Лебег потребовал еще, чтобы «булыжники», используемые в определении размерности, были маленькими. Это важная идея, и в конце мы вернемся к ней еще раз — в неожиданном ракурсе. А сейчас ясно, что условие малой величины «булыжников» спасает определение Лебега: скажем, короткие паркетины, в отличие от длинных половиц, в некоторых точках обязательно будут соприкасаться по три. Значит, три измерения пространства — это не просто возможность произвольно выбрать в нем какие-то три «разных» направления. Три измерения — это реальное ограничение наших возможностей, которое легко почувствовать, немного поиграв с кубиками или кирпичами.

Размерность пространства глазами Штирлица

Другое ограничение, связанное с трехмерностью пространства, хорошо чувствует узник, запертый в тюремной камере (например, Штирлиц в подвале у Мюллера). Как выглядит эта камера с его точки зрения? Шершавые бетонные стены, плотно запертая стальная дверь — словом, одна двумерная поверхность без щелей и отверстий, огораживающая со всех сторон замкнутое пространство, где он находится. Из такой оболочки деться действительно некуда. А можно ли запереть человека внутри одномерного контура? Представьте, как Мюллер рисует вокруг Штирлица мелом круг на полу и уходит восвояси: это не тянет даже на анекдот.

Из этих соображений извлекается еще один способ определить число измерений нашего пространства. Сформулируем его так: огородить со всех сторон область N-мерного пространства можно только (N-1)-мерной «поверхностью». В двумерном пространстве «поверхностью» будет одномерный контур, в одномерном — две нульмерные точки. Это определение придумал в 1913 году голландский математик Брауэр, но известным оно стало только спустя восемь лет, когда его независимо друг от друга, переоткрыли наш Павел Урысон и австриец Карл Менгер.

Здесь наши пути с Лебегом, Брауэром и их коллегами расходятся. Новое определение размерности было нужно им для того, чтобы построить абстрактную математическую теорию пространств любой размерности вплоть до бесконечной. Это — чисто математическая конструкция, игра человеческого ума, который достаточно силен даже для познания таких странных объектов, как бесконечномерное пространство. Математики не пытаются узнать, существуют ли на самом деле вещи, обладающие такой структурой: это не их профессия. Напротив, наш интерес к количеству измерений мира, в котором мы живем, физический: мы хотим узнать, сколько их на самом деле и как почувствовать их число «на своей шкуре». Нам нужны явления, а не чистые идеи.

Характерно, что все приведенные примеры были заимствованы более или менее из архитектуры. Именно эта область деятельности людей теснее всего связана с пространством, как оно представляется нам в обычной жизни. Чтобы продвинуться в поиске измерений физического мира дальше, потребуется выход к другим уровням реальности. Они доступны человеку благодаря современной технологии, а значит — физике.

При чем здесь скорость света?

Ненадолго вернемся к оставленному в камере Штирлицу. Чтобы выбраться из оболочки, надежно отделявшей его от остальной части трехмерного мира, он воспользовался четвертым измерением, которому не страшны двумерные преграды. А именно, он некоторое время подумал и нашел себе подходящее алиби. Иначе говоря, новое загадочное измерение, которым воспользовался Штирлиц, — это время.

Трудно сказать, кто первым заметил аналогию между временем и измерениями пространства. Два века назад об этом уже знали. Жозеф Лагранж, один из создателей классической механики, науки о движениях тел, сравнил ее с геометрией четырехмерного мира: его сравнение звучит, как цитата из современной книги по Общей теории относительности.

Ход мысли Лагранжа, впрочем, легко понять. В его время уже были известны графики зависимости переменных величин от времени, вроде нынешних кардиограмм или графиков месячного хода температуры. Такие графики рисуют на двумерной плоскости: вдоль оси ординат откладывают путь, пройденный переменной величиной, а вдоль оси абсцисс — прошедшее время. При этом время действительно становится просто «еще одним» геометрическим измерением. Точно так же можно добавить его и к трехмерному пространству нашего мира.

Но действительно ли время похоже на пространственные измерения? На плоскости с нарисованным графиком есть два выделенных «осмысленных» направления. А направления, не совпадающие ни с одной из осей, смысла не имеют, они не изображают ничего. На обычной же геометрической двумерной плоскости все направления равноправны, выделенных осей нет.

По-настоящему время можно считать четвертой координатой, только если оно не будет выделено среди остальных направлений в четырехмерном «пространстве-времени». Надо найти способ «вращать» пространство-время так, чтобы время и пространственные измерения «смешивались» и могли в определенном смысле переходить друг в друга.

Этот способ нашли Альберт Эйнштейн, создавший теорию относительности, и Герман Минковский, придавший ей строгую математическую форму. Они воспользовались тем, что в природе есть универсальная скорость — скорость света.

Возьмем две точки пространства, каждую — в свой момент времени, или два «события» на жаргоне теории относительности. Если умножить на скорость света интервал времени между ними, измеренный в секундах, то получится определенное расстояние в метрах. Будем считать, что этот воображаемый отрезок «перпендикулярен» пространственному расстоянию между событиями, а вместе они образуют «катеты» какого-то прямоугольного треугольника, «гипотенуза» которого — это отрезок в пространстве-времени, соединяющий выбранные события. Минковский предложил: чтобы найти квадрат длины «гипотенузы» этого треугольника, будем не прибавлять квадрат длины «пространственного» катета к квадрату длины «временного», а вычитать его. Конечно, при этом может получиться отрицательный результат: тогда считают, что «гипотенуза» имеет мнимую длину! Но какой же в этом смысл?

При вращении плоскости длина любого нарисованного на ней отрезка сохраняется. Минковский понял, что надо рассматривать такие «вращения» пространства-времени, которые сохраняют предложенную им «длину» отрезков между событиями. Именно так можно добиться, чтобы скорость света была в построенной теории универсальной. Если два события связаны световым сигналом, то «расстояние Минковского» между ними равно нулю: пространственное расстояние совпадает с интервалом времени, умноженным на скорость света. «Вращение», предложенное Минковским, сохраняет это «расстояние» нулевым, как бы ни смешивались при «повороте» пространство и время.

Это не единственная причина, по которой «расстояние» Минковского обладает реальным физическим смыслом, несмотря на крайне странное для неподготовленного человека определение. «Расстояние» Минковского дает способ построить «геометрию» пространства-времени так, что и пространственные, и временные интервалы между событиями удается сделать равноправными. Пожалуй, именно в этом заключается главная идея теории относительности.

Итак, время и пространство нашего мира так тесно связаны друг с другом, что трудно понять, где кончается одно и начинается другое. Вместе они образуют что-то вроде сцены, на которой разыгрывается спектакль «История Вселенной». Действующие лица — частицы материи, атомы и молекулы, из которых собраны галактики, туманности, звезды, планеты, а на некоторых планетах — даже живые разумные организмы (читателю должна быть известна по меньшей мере одна такая планета).

Опираясь на открытия предшественников, Эйнштейн создал новую физическую картину мира, в которой пространство и время оказались неотделимы друг от друга, а действительность стала по-настоящему четырехмерной. И в этой четырехмерной действительности «растворилось» одно из двух известных тогдашней науке «фундаментальных взаимодействий»: закон всемирного тяготения свелся к геометрической структуре четырехмерного мира. Но Эйнштейн ничего не смог сделать с другим фундаментальным взаимодействием — электромагнитным.

Пространство-время приобретает новые измерения

Общая теория относительности настолько красива и убедительна, что сразу после того, как она стала известна, другие ученые попытались пройти по тому же пути дальше. Эйнштейн свел к геометрии гравитацию? Значит, на долю его последователей остается геометризовать электромагнитные силы!

Так как возможности метрики четырехмерного пространства Эйнштейн исчерпал, его последователи стали пытаться как-то расширить набор геометрических объектов, из которых можно было бы сконструировать такую теорию. Вполне естественно, что им захотелось увеличить число размерностей.

Но пока теоретики занимались геометризацией электромагнитных сил, были открыты еще два фундаментальных взаимодействия — так называемые сильное и слабое. Теперь надо было объединить уже четыре взаимодействия. При этом возникла масса неожиданных трудностей, для преодоления которых изобретались новые идеи, все дальше уводившие ученых от наглядной физики прошлого века. Стали рассматривать модели миров, имеющих десятки и даже сотни измерений, пригодилось и бесконечномерное пространство. Чтобы рассказать об этих поисках, нужно было бы написать целую книжку. Нам важен другой вопрос: где же расположены все эти новые измерения? Можно ли почувствовать их так же, как мы ощущаем время и трехмерное пространство?

Представьте себе длинную и очень тонкую трубочку — например, пустой внутри пожарный шланг, уменьшенный в тысячу раз. Это двумерная поверхность, но два ее измерения неравноправны. Одно из них, длину, заметить легко — это «макроскопическое» измерение. Периметр же — «поперечное» измерение — можно разглядеть только под микроскопом. Современные многомерные модели мира похожи на эту трубочку, хотя они имеют не одно, а четыре макроскопических измерения — три пространственных и одно временное. Остальные измерения в этих моделях нельзя рассмотреть даже под электронным микроскопом. Чтобы обнаружить их проявления, физики пользуются ускорителями — очень дорогими, но грубыми «микроскопами» для субатомного мира.

Пока одни ученые совершенствовали эту впечатляющую картину, блестяще преодолевая одно препятствие за другим, у других назрел каверзный вопрос:

Может ли размерность быть дробной?

А почему бы и нет? Для этого надо «просто» найти новое свойство размерности, которое могло бы связать ее с нецелыми числами, и обладающие этим свойством геометрические объекты, имеющие дробную размерность. Если мы хотим найти, например, геометрическую фигуру, имеющую полтора измерения, то у нас есть два пути. Можно пытаться либо отнять пол-измерения у двумерной поверхности, либо добавить пол-измерения к одномерной линии. Чтобы это сделать, потренируемся сперва на добавлении или отнятии целого измерения.

Есть такой известный детский фокус. Фокусник берет треугольный листок бумаги, делает на нем надрез ножницами, сгибает листок по линии надреза пополам, делает еще один надрез, опять сгибает, надрезает последний раз, и — ап! — в его руках оказывается гирлянда из восьми треугольничков, каждый из которых совершенно подобен исходному, но в восемь раз меньше его по площади (и в корень квадратный из восьми раз — по размерам). Возможно, этот фокус показали в 1890 году итальянскому математику Джузеппе Пеано (а может быть, он сам любил его показывать), во всяком случае, именно тогда он заметил вот что. Возьмем идеальную бумагу, идеальные ножницы и повторим последовательность надрезания и складывания бесконечное число раз. Тогда размеры отдельных треугольничков, получаемых на каждом шаге этого процесса, будут стремиться к нулю, а сами треугольники стянутся в точки. Стало быть, мы получим из двумерного треугольника одномерную линию, не потеряв при этом ни кусочка бумаги! Если не растягивать эту линию в гирлянду, а оставить такой «скомканной», как у нас получилось при разрезании, то она заполнит треугольник целиком. Более того, под каким сильным микроскопом мы бы ни рассматривали этот треугольник, увеличивая его фрагменты в любое число раз, получаемая картина будет выглядеть точно так же, как неувеличенная: выражаясь научно, кривая Пеано имеет одинаковую структуру при всех масштабах увеличения, или является «масштабно инвариантной».

Итак, изогнувшись бесчисленное множество раз, одномерная кривая смогла как бы приобрести размерность два. Значит, есть надежда и на то, что менее «скомканная» кривая будет иметь «размерность», скажем, полтора. Но как же найти способ измерять дробные размерности?

В «булыжном» определении размерности, как помнит читатель, надо было использовать достаточно маленькие «булыжники», иначе результат мог получиться неправильный. Но маленьких «булыжников» потребуется много: тем больше, чем меньше их размер. Оказывается, для определения размерности не обязательно изучать, как «булыжники» прилегают друг к другу, а достаточно лишь выяснить, как возрастает их число при уменьшении величины.

Возьмем отрезок прямой длиной 1 дециметр и две кривых Пеано, вместе заполняющих квадрат размером дециметр на дециметр. Будем покрывать их маленькими квадратными «булыжниками» с длиной стороны 1 сантиметр, 1 миллиметр, 0,1 миллиметра и так далее вплоть до микрона. Если выражать размер «булыжника» в дециметрах, то на отрезок потребуется число «булыжников», равное их размеру в степени минус единица, а на кривые Пеано — размеру в степени минус два. При этом отрезок определенно имеет одно измерение, а кривая Пеано, как мы видели, — два. Это не просто совпадение. Показатель степени в соотношении, связывающем число «булыжников» с их размером, действительно равен (со знаком минус) размерности той фигуры, которая ими покрыта. Особенно важно, что показатель степени может быть дробным числом. Например, для кривой, промежуточной по своей «скомканности» между обычной линией и порой плотно заполняющих квадрат кривых Пеано, величина показателя будет больше 1 и меньше 2. Это и открывает нужную нам дорогу к определению дробных размерностей.

Именно таким способом была определена, например, размерность береговой линии Норвегии — страны, имеющей очень изрезанное (или «скомканное» — как кому больше нравится) побережье. Конечно, замощение булыжниками берега Норвегии происходило не на местности, а на карте из географического атласа. Результат (не абсолютно точный из-за невозможности на практике дойти до бесконечно малых «булыжников») составил 1,52 плюс-минус одна сотая. Ясно, что размерность не могла получиться меньше единицы, поскольку речь идет все-таки об «одномерной» линии, и больше двух, поскольку береговая линия Норвегии «нарисована» на двумерной поверхности земного шара.

Человек как мера всех вещей

Дробные размерности — это прекрасно, может сказать здесь читатель, но какое отношение они имеют к вопросу о числе измерений мира, в котором мы живем? Может ли случиться, что размерность мира дробная и не точно равна трем?

Примеры кривой Пеано и побережья Норвегии показывают, что дробная размерность получается, если кривая линия сильно «скомкана», заложена в бесконечно малые складочки. Процесс определения дробной размерности тоже включает в себя использование безгранично уменьшающихся «булыжников», которыми мы покрываем изучаемую кривую. Поэтому дробная размерность, выражаясь научно, может проявляться только «на достаточно малых масштабах», то есть показатель степени в соотношении, связывающем число «булыжников» с их размером, может лишь в пределе выходить на свое дробное значение. Наоборот, одним огромным булыжником можно накрыть фрактал — объект дробной размерности — конечных размеров неотличим от точки.

Для нас мир, в котором мы живем, — это прежде всего тот масштаб, на котором он доступен нам в повседневной действительности. Несмотря на поразительные достижения техники, его характерные размеры все еще определяются остротой нашего зрения и дальностью наших пеших прогулок, характерные промежутки времени — быстротой нашей реакции и глубиной нашей памяти, характерные величины энергии — силой тех взаимодействий, в которые вступает наше тело с окружающими вещами. Мы ненамного превзошли здесь древних, да и стоит ли стремиться к этому? Природные и технологические катастрофы несколько расширяют масштабы «нашей» действительности, но не делают их космическими. Микромир тем более недоступен в нашей повседневной жизни. Открытый перед нами мир — трехмерный, «гладкий» и «плоский», он прекрасно описывается геометрией древних греков; достижения науки в конечном счете должны служить не столько расширению, сколько защите его границ.

Так что же все-таки ответить людям, ждущим открытия скрытых размерностей нашего мира? Увы, единственное доступное для нас измерение, которое мир имеет сверх трех пространственных, — это время. Мало это или много, старо или ново, чудесно или обыденно? Время — это просто четвертая степень свободы, и воспользоваться ею можно очень по-разному. Вспомним еще раз того же Штирлица, кстати, физика по образованию: у каждого мгновенья свой резон…

Андрей Соболевский