Вращательное движение тела. Закон вращательного движения

ЛЕКЦИЯ №4

ОСНОВНЫЕ ЗАКОНЫ КИНЕТИКИ И ДИНАМИКИ

ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. МЕХАНИЧЕСКИЕ

СВОЙСТВА БИОТКАНЕЙ. БИОМЕХАНИЧЕСКИЕ

ПРОЦЕССЫ В ОПОРНО-ДВИГАТЕЛЬНОМ АППАРАТЕ

ЧЕЛОВЕКА.

1. Основные законы кинематики вращательного движения.

Вращательные движения тела вокруг неподвижной оси является наиболее простым видом движения. Оно характеризуется тем, что любые точки тела описывают окружности, центры которых расположены на одной прямой 0 ﺍ 0 ﺍﺍ , которая называется осью вращения (рис.1).

При этом положение тела в любой момент времени определяется углом поворота φ радиуса вектора R любой точки А относительно своего начального положения. Зависимость его от времени:

(1)

является уравнением вращательного движения. Быстрота вращения тела характеризуется угловой скоростью ω. Угловая скорость всех точек вращательного тела одинакова. Она является векторной величиной. Этот вектор направлен по оси вращения и связан с направлением вращения правилом правого винта:

. (2)

При равномерном движении точки по окружности

, (3)

где Δφ=2π – угол, соответствующий одному полному обороту тела, Δt=T – время одного полного оборота, или период вращения. Единица измерения угловой скорости [ω]=c -1 .

При равномерном движении ускорение тела характеризуется угловым ускорением ε (вектор его расположен аналогично вектору угловой скорости и направлен согласно с ним при ускоренном и в обратном направлении – при замедленном движении):

. (4)

Единица измерения углового ускорения [ε]=c -2 .

Вращательное движение можно характеризовать также линейной скоростью и ускорением его отдельных точек. Длина дуги dS, описываемой любой точкой А (рис.1) при повороте на угол dφ определяется по формуле: dS=Rdφ. (5)

Тогда линейная скорость точки :

. (6)

Линейное ускорение а :

. (7)

2. Основные законы динамики вращательного движения.

Вращение тела вокруг оси вызывается силой F, приложенной к любой точке тела, действующей в плоскости перпендикулярной оси вращения и направленной (или имеющей составляющую в этом направлении) перпендикулярно радиусу вектору точки приложения (рис.1).

Моментом силы относительно центра вращения называют векторную величину, численно равную произведению силына длину перпендикуляраd, опущенного из центра вращения на направление силы, называемого плечом силы. На рис.1 d=R, поэтому

. (8)

Момент вращающей силы является векторной величиной. Векторприложен к центру окружности О и направлен вдоль оси вращения. Направление векторасогласуется с направлением силы по правилу правого винта. Элементарная работаdA i , при повороте на малый угол dφ, когда тело проходит малый путь dS, равна:

Мерой инертности тела при поступательном движении является масса. При вращении тела мера его инертности характеризуется моментом инерции тела относительно оси вращения.

Моментом инерции I i материальной точки относительно оси вращения называют величину, равную произведению массы точки на квадрат расстояния её от оси (рис.2):

. (10)

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, из которых состоит тело:

. (11)

Или в пределе (n→∞):
, (12)

где интегрирование производится по всему объёмуV. Подобным образом вычисляются моменты инерции однородных тел правильной геометрической формы. Момент инерции выражается в кг·м 2 .

Момент инерции человека относительно вертикальной оси вращения, проходящей через центр масс (центр масс человека находится в сагиттальной плоскости несколько впереди второго крестового позвонка), в зависимости от положения человека имеет следующие значения: 1,2 кг·м 2 при стойке «смирно»; 17 кг·м 2 – в горизонтальном положении.

При вращении тела его кинетическая энергия складывается из кинетических энергий отдельных точек тела:

Продифференцировав (14), получим элементарное изменение кинетической энергии:

. (15)

Приравняв элементарную работу (формула 9) внешних сил к элементарному изменению кинетической энергии (формула 15), получим:
, откуда:
или, учитывая, что
получим:
. (16)

Это уравнение называется основным уравнением динамики вращательного движения. Эта зависимость аналогична IIзакону Ньютона для поступательного движения.

Моментом импульса L i материальной точки относительно оси называется величина, равная произведению импульса точки на расстояние её до оси вращения:

. (17)

Момент импульса Lтела, вращающегося вокруг неподвижной оси:

Момент импульса есть векторная величина, ориентированная по направлению вектора угловой скорости.

Теперь возвратимся к основному уравнению (16):

,
.

Подведём постоянную величину Iпод знак дифференциала и получим:
, (19)

где Mdtназывают импульсом момента силы. Если на тело не действуют внешние силы (М=0), то равно нулю и изменение момента количества движения (dL=0). Это означает, что момент импульса остаётся постоянным:
. (20)

Этот вывод называется законом сохранения момента импульса относительно оси вращения. Его используют, например, при вращательных движениях относительно свободной оси в спорте, например в акробатике и т.д. Так, фигурист на льду, изменяя в процессе вращения положение тела и соответственно момент инерции относительно оси вращения, может регулировать свою скорость вращения.

Лабораторная работа № 15

ИЗУЧЕНИЕ ДВИЖЕНИЯ ГИРОСКОПА

Цель работы: изучение законов вращательного движения, изучение движения (прецессии) гироскопа под действием момента сил.

Теория работы

Основные понятия. Основной закон вращательного движения

Моментом импульса материальной точки L относительно точки О называется векторное произведение радиуса-вектора этой точки на вектор ее импульсаp :

где r – радиус-вектор, проведенный из точки О в точку А, расположения материальной точки, p =mv – импульс материальной точки. Модуль вектора момента импульса:

где a - угол между векторами r и p , l – плечо вектора p относительно точки О. Вектор L, согласно определению векторного произведения перпендикулярен к плоскости в которой лежат векторы r и p (или v ), его направление совпадает с направлением поступательного движения правого винта при его вращении от r к p по кратчайшему расстоянию, как показано на рисунке.

Моментом импульса относительно оси называется скалярная величина, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки на этой оси.

Моментом силы M материальной точки относительно точки О называется векторная величина, определяемая векторным произведением радиуса-вектора r, проведенного из точки О в точку приложения силы, на силу F :

. Модуль вектора момента силы:

где a - угол между векторами r и F , d = r*sina – плечо силы – кратчайшее расстояние между линией действия силы и точкой О. Вектор M (также как L ) - псевдовектор, он перпендикулярен к плоскости в которой лежат векторы r и F , его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F по кратчайшему расстоянию, как показано на рисунке. Значение и направление вектора M также можно рассчитать математически используя определение векторного произведения.

Моментом силы относительно оси называется скалярная величина, равная проекции на эту ось вектора момента силы M определенного относительно произвольной точки на этой оси.

Основной закон динамики вращательного движения

Для выяснения назначения приведенных выше понятий рассмотрим систему из двух материальных точек (частиц) и затем обобщим результат на систему из произвольного числа частиц (т.е. на твердое тело.)

Пусть на частицы с массами m 1 , m 2 действуют внутренние f 12 , f 21 и внешние силы F 1 и F 2 .

Запишем второй закон Ньютона для каждой из частиц, а также вытекающую из третьего закона Ньютона связь между внутренними силами:

Умножим векторно уравнение (1) на r 1 , а уравнение (2) – на r 2 и сложим полученные выражения:

Преобразуем левые части уравнения (4), учитывая что

И векторы и параллельны и их векторное произведение равно нулю, тогда

(5 )

Первые два слагаемых справа в (4) равны нулю, так как внутренние силы f 12 , f 21 динаковы по величине и противоположно направлены (векторr 1 -r 2 направлен по одной и той же прямой, что и вектор f 12 ).

В этой главе твердое тело рассматривается как совокупность материальных точек, не смещающихся друг относительно друга. Такое не поддающееся деформации тело называется абсолютно твердым.

Пусть твердое тело произвольной формы вращается под действием силы вокруг неподвижной оси 00 (рис. 30). Тогда все его точки описывают окружности с центрами на этой оси. Понятно, что все точки тела имеют одинаковую угловую скорость и одинаковое угловое ускорение (в данный момент времени).

Разложим действующую силу на три взаимно перпендикулярные составляющие: (параллельную оси), (перпендикулярную оси и лежащую на линии, проходящей через ось) и (перпендикулярную Очевидно, что вращение тела вызывает только составляющая являющаяся касательной к окружности, описываемой точкой приложения силы. Составляющие вращения не вызывают. Назовем вращающей силой. Как известно из школьного курса физики, действие силы зависит не только от ее величины, но и от расстояния точки ее приложения А до оси вращения, т. е. зависит от момента силы. Моментом вращающей силы (вращающим моментом) называется произведение вращающей силы на радиус окружности описываемой точкой приложения силы:

Мысленно разобьем все тело на очень малые частицы - элементарные массы. Хотя сила приложена к одной точке А тела, ее вращающее действие передается всем частицам: к каждой элементарной массе будет приложена элементарная вращающая сила (см. рис. 30). Согласно второму закону Ньютона,

где линейное ускорение, сообщаемое элементарной массе. Умножая обе части этого равенства на радиус окружности, описываемой элементарной массой, и вводя вместо линейного угловое ускорение (см. § 7), получим

Учитывая, что вращающий момент, приложенный к элементарной массе, и обозначая

где момент инерции элементарной массы (материальной точки). Следовательно, моментом инерции материальной точки относительно некоторой оси вращения называется произведение массы материальной точки на квадрат ее расстояния до этой оси.

Суммируя вращающие моменты приложенные ко всем элементарным массам, составляющим тело, получим

где вращающий момент, приложенный к телу, т. е. момент вращающей силы момент инерции тела. Следовательно, моментом инерции тела называется сумма моментов инерции всех материальных точек, составляющих тело.

Теперь можно переписать формулу (3) в виде

Формула (4) выражает основной закон динамики вращения (второй закон Ньютона для вращательного движения):

момент вращающей силы, приложенной к телу, равен произведению момента инерции тела на угловое ускорение.

Из формулы (4) видно, что угловое ускорение, сообщаемое телу вращающим моментом, зависит от момента инерции тела; чем больше момент инерции, тем меньше угловое ускорение. Следовательно, момент инерции характеризует инерционные свойства тела при вращательном движении подобно тому, как масса характеризует инерционные свойства тела при поступательном движении, Однако в отличие от массы момент инерции данного тела может иметь множество значений в соответствии с множеством возможных осей вращения. Поэтому, говоря о моменте инерции твердого тела, необходимо указывать, относительно какой оси он рассчитывается. На практике обычно приходится иметь дело с моментами инерции относительно осей симметрии тела.

Из формулы (2) следует, что единицей измерения момента инерции является килограмм-квадратный метр

Если вращающий момент и момент инерции тела то формулу (4) можно представить в виде

Вывод основного закона динамики вращательного движения. К выводу основного уравнения динамики вращательного движения. Динамика вращательного движения материальной точки. В проекции на тангенциальное направление уравнение движения примет вид: Ft = mt.

15.Вывод основного закона динамики вращательного движения.

Рис. 8.5. К выводу основного уравнения динамики вращательного движения.

Динамика вращательного движения материальной точки. Рассмотрим частицу массы m, вращающуюся вокруг токи О по окружности радиуса R , под действием результирующей силы F (см. рис. 8.5). В инерциальной системе отсчета справедлив 2 ой закон Ньютона. Запишем его применительно к произвольному моменту времени:

F = m· a .

Нормальная составляющая силы не способна вызвать вращения тела, поэтому рассмотрим только действие ее тангенциальной составляющей. В проекции на тангенциальное направление уравнение движения примет вид:

F t = m·a t .

Поскольку a t = e·R, то

F t = m·e·R (8.6)

Умножив левую и правую части уравнения скалярно на R, получим:

F t ·R= m·e·R 2 (8.7)
M = I·e. (8.8)

Уравнение (8.8) представляет собой 2 ой закон Ньютона (уравнение динамики) для вращательного движения материальной точки. Ему можно придать векторный характер, учитывая, что наличие момента сил вызывает появление параллельного ему вектора углового ускорения, направленного вдоль оси вращения (см. рис. 8.5):

M = I· e . (8.9)

Основной закон динамики материальной точки при вращательном движении можно сформулировать следующим образом:

произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку.


А также другие работы, которые могут Вас заинтересовать

66899. Язык и мышление, Логическая и языковая картины мира 132.5 KB
Невербальное мышление осуществляется посредством наглядно-чувственных образов, возникающих в результате восприятия впечатлений действительности, которые сохраняются памятью и затем воссоздаются воображением. Невербальное мышление характерно в той или иной степени для некоторых животных.
66900. ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА 51.5 KB
К механическим свойствам относят прочность сопротивление металла сплава деформации и разрушению и пластичность способность металла к необратимой без разрушения деформации остающейся после удаления деформирующих сил. Кроме того напряжения возникают в процессе кристаллизации при неравномерной...
66902. Особенности расследования убийств, совершенных на бытовой почве 228 KB
Криминалистическая характеристика убийств. Особенности первоначального этапа расследования. Типовые ситуации первоначального этапа расследования. Особенности организации и производства первоначальных следственных. Особенности применения специальных познаний...
66904. КУЛЬТУРА ДРЕВНЕЙШЕГО МИРА 62.5 KB
Литературоведение - наука о художественной литературе, ее происхождении, сущности и развитии. Современное литературоведение состоит из трех самостоятельных, но тесно связанных между собой дисциплин (разделов): теории литературы, истории литературы и литературной критики
66905. Логические элементы 441 KB
Рассматриваются принципы работы, характеристики и типовые схемы включения простейших логических элементов - инверторов, буферов, элементов И и ИЛИ, а также приводятся схемотехнические решения, позволяющие реализовать на их основе часто встречающиеся функции.
66906. Модели и процессы управления проектами программных средств 257.5 KB
Назначение методологии СММ/CMMI – системы и модели оценки зрелости – состоит в предоставлении необходимых общих рекомендаций и инструкций предприятиям, производящим ПС, по выбору стратегии совершенствования качества процессов и продуктов, путем анализа степени их производственной зрелости и оценивания факторов...

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).