Properties of the function y sinx in simple words. Sine (sin x) and cosine (cos x) – properties, graphs, formulas

In this lesson we will take a detailed look at the function y = sin x, its basic properties and graph. At the beginning of the lesson we will give a definition trigonometric function y = sin t on the coordinate circle and consider the graph of the function on the circle and line. Let's show the periodicity of this function on the graph and consider the main properties of the function. At the end of the lesson, we will solve several simple problems using the graph of a function and its properties.

Topic: Trigonometric functions

Lesson: Function y=sinx, its basic properties and graph

When considering a function, it is important to associate each argument value with a single function value. This law of correspondence and is called a function.

Let us define the correspondence law for .

Any real number corresponds to a single point on the unit circle. A point has a single ordinate, which is called the sine of the number (Fig. 1).

Each argument value is associated with a single function value.

Obvious properties follow from the definition of sine.

The figure shows that because is the ordinate of a point on the unit circle.

Consider the graph of the function. Let us recall the geometric interpretation of the argument. The argument is the central angle, measured in radians. Along the axis we will plot real numbers or angles in radians, along the axis the corresponding values ​​of the function.

For example, an angle on the unit circle corresponds to a point on the graph (Fig. 2)

We have obtained a graph of the function in the area. But knowing the period of the sine, we can depict the graph of the function over the entire domain of definition (Fig. 3).

The main period of the function is This means that the graph can be obtained on a segment and then continued throughout the entire domain of definition.

Consider the properties of the function:

1) Scope of definition:

2) Range of values:

3) Odd function:

4) Smallest positive period:

5) Coordinates of the points of intersection of the graph with the abscissa axis:

6) Coordinates of the point of intersection of the graph with the ordinate axis:

7) Intervals at which the function takes positive values:

8) Intervals at which the function takes negative values:

9) Increasing intervals:

10) Decreasing intervals:

11) Minimum points:

12) Minimum functions:

13) Maximum points:

14) Maximum functions:

We looked at the properties of the function and its graph. The properties will be used repeatedly when solving problems.

References

1. Algebra and beginning of analysis, grade 10 (in two parts). Tutorial for educational institutions (profile level) ed. A. G. Mordkovich. -M.: Mnemosyne, 2009.

2. Algebra and beginning of analysis, grade 10 (in two parts). Problem book for educational institutions (profile level), ed. A. G. Mordkovich. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra and calculus for grade 10 ( training manual for students of schools and classes with in-depth study of mathematics).-M.: Prosveshchenie, 1996.

4. Galitsky M.L., Moshkovich M.M., Shvartsburd S.I. In-Depth Study algebra and mathematical analysis.-M.: Education, 1997.

5. Collection of problems in mathematics for applicants to higher educational institutions (edited by M.I. Skanavi). - M.: Higher School, 1992.

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Algebraic simulator.-K.: A.S.K., 1997.

7. Sahakyan S.M., Goldman A.M., Denisov D.V. Problems on algebra and principles of analysis (a manual for students in grades 10-11 of general education institutions). - M.: Prosveshchenie, 2003.

8. Karp A.P. Collection of problems on algebra and principles of analysis: textbook. allowance for 10-11 grades. with depth studied Mathematics.-M.: Education, 2006.

Homework

Algebra and beginning of analysis, grade 10 (in two parts). Problem book for educational institutions (profile level), ed.

A. G. Mordkovich. -M.: Mnemosyne, 2007.

№№ 16.4, 16.5, 16.8.

Additional web resources

3. Educational portal to prepare for exams ().

Lesson and presentation on the topic: "Function y=sin(x). Definitions and properties"

Additional materials
Dear users, do not forget to leave your comments, reviews, wishes! All materials have been checked by an anti-virus program.

Manuals and simulators in the Integral online store for grade 10 from 1C
We solve problems in geometry. Interactive construction tasks for grades 7-10
Software environment "1C: Mathematical Constructor 6.1"

What we will study:

  • Properties of the function Y=sin(X).
  • Function graph.
  • How to build a graph and its scale.
  • Examples.

Properties of sine. Y=sin(X)

Guys, we have already become acquainted with trigonometric functions numeric argument. Do you remember them?

Let's take a closer look at the function Y=sin(X)

Let's write down some properties of this function:
1) The domain of definition is the set of real numbers.
2) The function is odd. Let's remember the definition odd function. A function is called odd if the equality holds: y(-x)=-y(x). As we remember from the ghost formulas: sin(-x)=-sin(x). The definition is fulfilled, which means Y=sin(X) is an odd function.
3) The function Y=sin(X) increases on the segment and decreases on the segment [π/2; π]. When we move along the first quarter (counterclockwise), the ordinate increases, and when we move through the second quarter it decreases.

4) The function Y=sin(X) is limited from below and from above. This property follows from the fact that
-1 ≤ sin(X) ≤ 1
5) The smallest value of the function is -1 (at x = - π/2+ πk). The largest value of the function is 1 (at x = π/2+ πk).

Let's use properties 1-5 to plot the function Y=sin(X). We will build our graph sequentially, applying our properties. Let's start building a graph on the segment.

Particular attention should be paid to the scale. On the ordinate axis it is more convenient to take a unit segment equal to 2 cells, and on the abscissa axis it is more convenient to take a unit segment (two cells) equal to π/3 (see figure).


Plotting the sine x function, y=sin(x)

Let's calculate the values ​​of the function on our segment:



Let's build a graph using our points, taking into account the third property.

Conversion table for ghost formulas

Let's use the second property, which says that our function is odd, which means that it can be reflected symmetrically with respect to the origin:


We know that sin(x+ 2π) = sin(x). This means that on the interval [- π; π] the graph looks the same as on the segment [π; 3π] or or [-3π; - π] and so on. All we have to do is carefully redraw the graph in the previous figure along the entire x-axis.



The graph of the function Y=sin(X) is called a sinusoid.


Let's write a few more properties according to the constructed graph:
6) The function Y=sin(X) increases on any segment of the form: [- π/2+ 2πk; π/2+ 2πk], k is an integer and decreases on any segment of the form: [π/2+ 2πk; 3π/2+ 2πk], k – integer.
7) Function Y=sin(X) is a continuous function. Let's look at the graph of the function and make sure that our function has no breaks, this means continuity.
8) Range of values: segment [- 1; 1]. This is also clearly visible from the graph of the function.
9) Function Y=sin(X) - periodic function. Let's look at the graph again and see that the function takes the same values ​​at certain intervals.

Examples of problems with sine

1. Solve the equation sin(x)= x-π

Solution: Let's build 2 graphs of the function: y=sin(x) and y=x-π (see figure).
Our graphs intersect at one point A(π;0), this is the answer: x = π




2. Graph the function y=sin(π/6+x)-1

Solution: The desired graph will be obtained by moving the graph of the function y=sin(x) π/6 units to the left and 1 unit down.




Solution: Let's build a graph of the function and consider our segment [π/2; 5π/4].
The graph of the function shows that the largest and smallest values ​​are achieved at the ends of the segment, at points π/2 and 5π/4, respectively.
Answer: sin(π/2) = 1 – the largest value, sin(5π/4) = smallest value.



Sine problems for independent solution


  • Solve the equation: sin(x)= x+3π, sin(x)= x-5π
  • Graph the function y=sin(π/3+x)-2
  • Graph the function y=sin(-2π/3+x)+1
  • Find the largest and smallest value of the function y=sin(x) on the segment
  • Find the largest and smallest value of the function y=sin(x) on the interval [- π/3; 5π/6]

In this lesson we will take a detailed look at the function y = sin x, its basic properties and graph. At the beginning of the lesson, we will give the definition of the trigonometric function y = sin t on the coordinate circle and consider the graph of the function on the circle and line. Let's show the periodicity of this function on the graph and consider the main properties of the function. At the end of the lesson, we will solve several simple problems using the graph of a function and its properties.

Topic: Trigonometric functions

Lesson: Function y=sinx, its basic properties and graph

When considering a function, it is important to associate each argument value with a single function value. This law of correspondence and is called a function.

Let us define the correspondence law for .

Any real number corresponds to a single point on the unit circle. A point has a single ordinate, which is called the sine of the number (Fig. 1).

Each argument value is associated with a single function value.

Obvious properties follow from the definition of sine.

The figure shows that because is the ordinate of a point on the unit circle.

Consider the graph of the function. Let us recall the geometric interpretation of the argument. The argument is the central angle, measured in radians. Along the axis we will plot real numbers or angles in radians, along the axis the corresponding values ​​of the function.

For example, an angle on the unit circle corresponds to a point on the graph (Fig. 2)

We have obtained a graph of the function in the area. But knowing the period of the sine, we can depict the graph of the function over the entire domain of definition (Fig. 3).

The main period of the function is This means that the graph can be obtained on a segment and then continued throughout the entire domain of definition.

Consider the properties of the function:

1) Scope of definition:

2) Range of values:

3) Odd function:

4) Smallest positive period:

5) Coordinates of the points of intersection of the graph with the abscissa axis:

6) Coordinates of the point of intersection of the graph with the ordinate axis:

7) Intervals at which the function takes positive values:

8) Intervals at which the function takes negative values:

9) Increasing intervals:

10) Decreasing intervals:

11) Minimum points:

12) Minimum functions:

13) Maximum points:

14) Maximum functions:

We looked at the properties of the function and its graph. The properties will be used repeatedly when solving problems.

References

1. Algebra and beginning of analysis, grade 10 (in two parts). Textbook for general education institutions (profile level), ed. A. G. Mordkovich. -M.: Mnemosyne, 2009.

2. Algebra and beginning of analysis, grade 10 (in two parts). Problem book for educational institutions (profile level), ed. A. G. Mordkovich. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra and mathematical analysis for grade 10 (textbook for students of schools and classes with in-depth study of mathematics). - M.: Prosveshchenie, 1996.

4. Galitsky M.L., Moshkovich M.M., Shvartsburd S.I. In-depth study of algebra and mathematical analysis.-M.: Education, 1997.

5. Collection of problems in mathematics for applicants to higher educational institutions (edited by M.I. Skanavi). - M.: Higher School, 1992.

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Algebraic simulator.-K.: A.S.K., 1997.

7. Sahakyan S.M., Goldman A.M., Denisov D.V. Problems on algebra and principles of analysis (a manual for students in grades 10-11 of general education institutions). - M.: Prosveshchenie, 2003.

8. Karp A.P. Collection of problems on algebra and principles of analysis: textbook. allowance for 10-11 grades. with depth studied Mathematics.-M.: Education, 2006.

Homework

Algebra and beginning of analysis, grade 10 (in two parts). Problem book for educational institutions (profile level), ed.

A. G. Mordkovich. -M.: Mnemosyne, 2007.

№№ 16.4, 16.5, 16.8.

Additional web resources

3. Educational portal for preparing for exams ().

In this lesson we will take a detailed look at the function y = sin x, its basic properties and graph. At the beginning of the lesson, we will give the definition of the trigonometric function y = sin t on the coordinate circle and consider the graph of the function on the circle and line. Let's show the periodicity of this function on the graph and consider the main properties of the function. At the end of the lesson, we will solve several simple problems using the graph of a function and its properties.

Topic: Trigonometric functions

Lesson: Function y=sinx, its basic properties and graph

When considering a function, it is important to associate each argument value with a single function value. This law of correspondence and is called a function.

Let us define the correspondence law for .

Any real number corresponds to a single point on the unit circle. A point has a single ordinate, which is called the sine of the number (Fig. 1).

Each argument value is associated with a single function value.

Obvious properties follow from the definition of sine.

The figure shows that because is the ordinate of a point on the unit circle.

Consider the graph of the function. Let us recall the geometric interpretation of the argument. The argument is the central angle, measured in radians. Along the axis we will plot real numbers or angles in radians, along the axis the corresponding values ​​of the function.

For example, an angle on the unit circle corresponds to a point on the graph (Fig. 2)

We have obtained a graph of the function in the area. But knowing the period of the sine, we can depict the graph of the function over the entire domain of definition (Fig. 3).

The main period of the function is This means that the graph can be obtained on a segment and then continued throughout the entire domain of definition.

Consider the properties of the function:

1) Scope of definition:

2) Range of values:

3) Odd function:

4) Smallest positive period:

5) Coordinates of the points of intersection of the graph with the abscissa axis:

6) Coordinates of the point of intersection of the graph with the ordinate axis:

7) Intervals at which the function takes positive values:

8) Intervals at which the function takes negative values:

9) Increasing intervals:

10) Decreasing intervals:

11) Minimum points:

12) Minimum functions:

13) Maximum points:

14) Maximum functions:

We looked at the properties of the function and its graph. The properties will be used repeatedly when solving problems.

References

1. Algebra and beginning of analysis, grade 10 (in two parts). Textbook for general education institutions (profile level), ed. A. G. Mordkovich. -M.: Mnemosyne, 2009.

2. Algebra and beginning of analysis, grade 10 (in two parts). Problem book for educational institutions (profile level), ed. A. G. Mordkovich. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra and mathematical analysis for grade 10 (textbook for students of schools and classes with in-depth study of mathematics). - M.: Prosveshchenie, 1996.

4. Galitsky M.L., Moshkovich M.M., Shvartsburd S.I. In-depth study of algebra and mathematical analysis.-M.: Education, 1997.

5. Collection of problems in mathematics for applicants to higher educational institutions (edited by M.I. Skanavi). - M.: Higher School, 1992.

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Algebraic simulator.-K.: A.S.K., 1997.

7. Sahakyan S.M., Goldman A.M., Denisov D.V. Problems on algebra and principles of analysis (a manual for students in grades 10-11 of general education institutions). - M.: Prosveshchenie, 2003.

8. Karp A.P. Collection of problems on algebra and principles of analysis: textbook. allowance for 10-11 grades. with depth studied Mathematics.-M.: Education, 2006.

Homework

Algebra and beginning of analysis, grade 10 (in two parts). Problem book for educational institutions (profile level), ed.

A. G. Mordkovich. -M.: Mnemosyne, 2007.

№№ 16.4, 16.5, 16.8.

Additional web resources

3. Educational portal for preparing for exams ().