Как взять интеграл от логарифма. Сложные интегралы

Подробно рассмотрены примеры решений интегралов по частям, подынтегральное выражение которых содержит логарифм, арксинус, арктангенс, а также логарифм в целой степени и логарифм от многочлена.

Содержание

См. также: Метод интегрирования по частям
Таблица неопределенных интегралов
Методы вычисления неопределенных интегралов
Основные элементарные функции и их свойства

Формула интегрирования по частям

Ниже, при решении примеров, применяется формула интегрирования по частям:
;
.

Примеры интегралов, содержащих логарифм и обратные тригонометрические функции

Вот примеры интегралов, которые интегрируются по частям:
, , , , , , .

При интегрировании ту часть подынтегрального выражения, которая содержит логарифм или обратные тригонометрические функции обозначают через u , остальное - через dv .

Ниже приведены примеры с подробными решениями этих интегралов.

Простой пример с логарифмом

Вычислим интеграл, содержащий произведение многочлена и логарифма:

Здесь подынтегральное выражение содержит логарифм. Делаем подстановки
u = ln x , dv = x 2 dx . Тогда
,
.

Интегрируем по частям.
.


.
Тогда
.
В конце вычислений добавим постоянную C .

Пример логарифма в степени 2

Рассмотрим пример, в котором в подынтегральное выражение входит логарифм в целочисленной степени. Такие интегралы также могут интегрироваться по частям.

Делаем подстановки
u = (ln x) 2 , dv = x dx . Тогда
,
.

Оставшийся интеграл также вычисляем по частям:
.
Подставляем
.

Пример, в котором аргумент логарифма является многочленом

По частям могут вычисляться интегралы, в подынтегральное выражение которого входит логарифм, аргумент которого является многочленом, рациональной или иррациональной функцией. В качестве примера, вычислим интеграл с логарифмом, аргумент которого является многочленом.
.

Делаем подстановки
u = ln( x 2 - 1) , dv = x dx .
Тогда
,
.

Вычисляем оставшийся интеграл:
.
Мы здесь не пишем знак модуля ln | x 2 - 1| , поскольку подынтегральное выражение определено при x 2 - 1 > 0 . Подставляем
.

Пример с арксинусом

Рассмотрим пример интеграла, в подынтегральное выражение которого входит арксинус.
.

Делаем подстановки
u = arcsin x ,
.
Тогда
,
.

Далее замечаем, что подынтегральное выражение определено при |x| < 1 . Раскроем знак модуля под логарифмом, учитывая что 1 - x > 0 и 1 + x > 0 .

Пример с арктангенсом

Решим пример с арктангенсом:
.

Интегрируем по частям.
.
Выделим целую часть дроби:
x 8 = x 8 + x 6 - x 6 - x 4 + x 4 + x 2 - x 2 - 1 + 1 = (x 2 + 1)(x 6 - x 4 + x 2 - 1) + 1 ;
.
Интегрируем:
.
Окончательно имеем.

Интегрирование по частям. Примеры решений

И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, экзамене студенту почти всегда предлагают решить интегралы следующих типов: простейший интеграл (см. статью ) либо интеграл на замену переменной (см. статью ) либо интеграл как раз на метод интегрирования по частям .

Как всегда, под рукой должны быть: Таблица интегралов и Таблица производных . Если у Вас до сих пор их нет, то, пожалуйста, посетите кладовку моего сайта: Математические формулы и таблицы . Не устану повторять – лучше всё распечатать. Весь материал я постараюсь изложить последовательно, просто и доступно, в интегрировании по частям нет особых трудностей.

Какую задачу решает метод интегрирования по частям? Метод интегрирования по частям решает очень важную задачу, он позволяет интегрировать некоторые функции, отсутствующие в таблице, произведение функций, а в ряде случаев – и частное. Как мы помним, нет удобной формулы:. Зато есть такая: – формула интегрирования по частям собственной персоной. Знаю, знаю, ты одна такая – с ней мы и будем работать весь урок (уже легче).

И сразу список в студию. По частям берутся интегралы следующих видов:

1) , , – логарифм, логарифм, умноженный на какой-нибудь многочлен.

2) , – экспоненциальная функция, умноженная на какой-нибудь многочлен. Сюда же можно отнести интегралы вроде – показательная функция, умноженная на многочлен, но на практике процентах так в 97, под интегралом красуется симпатичная буква «е». … что-то лирической получается статья, ах да… весна же пришла.

3) , , – тригонометрические функции, умноженные на какой-нибудь многочлен.

4) , – обратные тригонометрические функции («арки»), «арки», умноженные на какой-нибудь многочлен.

Также по частям берутся некоторые дроби, соответствующие примеры мы тоже подробно рассмотрим.

Интегралы от логарифмов

Пример 1

Классика. Время от времени данный интеграл можно встретить в таблицах, но пользоваться готовым ответом нежелательно, так как у преподавателя весенний авитаминоз и он сильно заругается. Потому что рассматриваемый интеграл отнюдь не табличный – он берётся по частям. Решаем:

Прерываем решение на промежуточные объяснения.

Используем формулу интегрирования по частям:

Формула применяется слева направо

Смотрим на левую часть: . Очевидно, что в нашем примере (и во всех остальных, которые мы рассмотрим) что-то нужно обозначить за , а что-то за .

В интегралах рассматриваемого типа за всегда обозначается логарифм.

Технически оформление решения реализуется следующим образом, в столбик записываем:

То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтегрального выражения.

Следующий этап: находим дифференциал :

Дифференциал – это почти то же самое, что и производная, как его находить, мы уже разбирали на предыдущих уроках.

Теперь находим функцию . Для того чтобы найти функцию необходимо проинтегрировать правую часть нижнего равенства :

Теперь открываем наше решение и конструируем правую часть формулы: .
Вот кстати, и образец чистового решения с небольшими пометками:


Единственный момент, в произведении я сразу переставил местами и , так как множитель принято записывать перед логарифмом.

Как видите, применение формулы интегрирования по частям, по сути дела, свело наше решение к двум простым интегралам.

Обратите внимание, что в ряде случаев сразу после применения формулы, под оставшимся интегралом обязательно проводится упрощение – в рассматриваемом примере мы сократили подынтегральное выражение на «икс».

Выполним проверку. Для этого нужно взять производную от ответа:

Получена исходная подынтегральная функция, значит, интеграл решён правильно.

В ходе проверки мы использовали правило дифференцирования произведения: . И это не случайно.

Формула интегрирования по частям и формула – это два взаимно обратных правила.

Пример 2

Найти неопределенный интеграл.

Подынтегральная функция представляет собой произведение логарифма на многочлен.
Решаем.

Я еще один раз подробно распишу порядок применения правила, в дальнейшем примеры будут оформляться более кратко, и, если у Вас возникнут трудности в самостоятельном решении, нужно вернуться обратно к первым двум примерам урока.

Как уже говорилось, за необходимо обозначить логарифм (то, что он в степени – значения не имеет). За обозначаем оставшуюся часть подынтегрального выражения.

Записываем в столбик:

Сначала находим дифференциал :

Здесь использовано правило дифференцирования сложной функции . Не случайно, на самом первом уроке темы Неопределенный интеграл. Примеры решений я акцентировал внимание на том, что для того, чтобы освоить интегралы, необходимо «набить руку» на производных. С производными придется столкнуться еще не раз.

Теперь находим функцию , для этого интегрируем правую часть нижнего равенства :

Для интегрирования мы применили простейшую табличную формулу

Теперь всё готово для применения формулы . Открываем «звёздочкой» и «конструируем» решение в соответствии с правой частью :

Под интегралом у нас снова многочлен на логарифм! Поэтому решение опять прерывается и правило интегрирования по частям применяется второй раз. Не забываем, что за в похожих ситуациях всегда обозначается логарифм.

Хорошо бы, если к данному моменту простейшие интегралы и производные Вы умели находить устно.

(1) Не путаемся в знаках! Очень часто здесь теряют минус, также обратите внимание, что минус относится ко всей скобке , и эти скобки нужно корректно раскрыть.

(2) Раскрываем скобки. Последний интеграл упрощаем.

(3) Берем последний интеграл.

(4) «Причесываем» ответ.

Необходимость дважды (а то и трижды) применять правило интегрирования по частям возникает не так уж и редко.

А сейчас пара примеров для самостоятельного решения:

Пример 3

Найти неопределенный интеграл.

Этот пример решается методом замены переменной (или подведением под знак дифференциала)! А почему бы и нет – можете попробовать взять его по частям, получится забавная вещь.

Пример 4

Найти неопределенный интеграл.

А вот этот интеграл интегрируется по частям (обещанная дробь).

Это примеры для самостоятельного решения, решения и ответы в конце урока.

Вроде бы в примерах 3,4 подынтегральные функции похожи, а вот методы решения – разные! В этом-то и состоит основная трудность освоения интегралов – если неправильно подобрать метод решения интеграла, то возиться с ним можно часами, как с самой настоящей головоломкой. Поэтому чем больше вы прорешаете различных интегралов – тем лучше, тем легче пройдут зачет и экзамен. Кроме того, на втором курсе будут дифференциальные уравнения, а без опыта решения интегралов и производных делать там нечего.

По логарифмам, пожалуй, более чем достаточно. На закуску могу еще вспомнить, что студенты-технари логарифмами называют женскую грудь =). Кстати, полезно знать назубок графики основных элементарных функций: синуса, косинуса, арктангенса, экспоненты, многочленов третьей, четвертой степени и т.д. Нет, конечно, презерватив на глобус
я натягивать не буду, но теперь вы многое запомните из раздела Графики и функции =).

Интегралы от экспоненты, умноженной на многочлен

Общее правило:

Пример 5

Найти неопределенный интеграл.

Используя знакомый алгоритм, интегрируем по частям:


Если возникли трудности с интегралом , то следует вернуться к статье Метод замены переменной в неопределенном интеграле .

Единственное, что еще можно сделать, это «причесать» ответ:

Но если Ваша техника вычислений не очень хороша, то самый выгодный вариант оставить ответом или даже

То есть, пример считается решенным, когда взят последний интеграл. Ошибкой не будет, другое дело, что преподаватель может попросить упростить ответ.

Пример 6

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Данный интеграл дважды интегрируется по частям. Особое внимание следует обратить на знаки – здесь легко в них запутаться, также помним, что – сложная функция.

Больше про экспоненту рассказывать особо нечего. Могу только добавить, что экспонента и натуральный логарифм взаимно-обратные функции, это я к теме занимательных графиков высшей математики =) Стоп-стоп, не волнуемся, лектор трезв.

Интегралы от тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается многочлен

Пример 7

Найти неопределенный интеграл.

Интегрируем по частям:

Хммм, …и комментировать нечего.

Пример 8

Найти неопределенный интеграл

Это пример для самостоятельного решения

Пример 9

Найти неопределенный интеграл

Еще один пример с дробью. Как и в двух предыдущих примерах за обозначается многочлен.

Интегрируем по частям:

Если возникли трудности или недопонимание с нахождением интеграла , то рекомендую посетить урок Интегралы от тригонометрических функций .

Пример 10

Найти неопределенный интеграл

Это пример для самостоятельного решения.

Подсказка: перед использованием метода интегрирования по частям следует применить некоторую тригонометрическую формулу, которая превращает произведение двух тригонометрических функций в одну функцию. Формулу также можно использовать и в ходе применения метода интегрирования по частям, кому как удобнее.

Вот, пожалуй, и всё в данном параграфе. Почему-то вспомнилась строчка из гимна физмата «А синуса график волна за волной по оси абсцисс пробегает»….

Интегралы от обратных тригонометрических функций.
Интегралы от обратных тригонометрических функций, умноженных на многочлен

Общее правило: за всегда обозначается обратная тригонометрическая функция .

Напоминаю, что к обратным тригонометрическим функциям относятся арксинус, арккосинус, арктангенс и арккотангенс. Для краткости записи я буду называть их «арками»

Таблица первообразных ("интегралов"). Таблица интегралов. Табличные неопределенные интегралы. (Простейшие интегралы и интегралы с параметром). Формулы интегрирования по частям. Формула Ньютона-Лейбница.

Таблица первообразных ("интегралов"). Табличные неопределенные интегралы. (Простейшие интегралы и интегралы с параметром).

Интеграл степенной функции.

Интеграл степенной функции.

Интеграл, сводящийся к интегралу степенной функции, если загнать х под знак диффференциала.

Интеграл экспоненты, где a-постоянное число.

Интеграл сложной экспоненциальной функции.

Интеграл экспоненциальной функции.

Интеграл, равняющийся натуральному логорифму.

Интеграл: "Длинный логарифм".

Интеграл: "Длинный логарифм".

Интеграл: "Высокий логарифм".

Интеграл, где х в числителе заводится под знак дифференциала (константу под знаком можно как прибавлять, так и отнимать), в итоге схож с интегралом, равным натуральному логорифму.

Интеграл: "Высокий логарифм".

Интеграл косинуса.

Интеграл синуса.

Интеграл, равный тангенсу.

Интеграл, равный котангенсу.

Интеграл, равный как арксинусу, так и арккосинусу

Интеграл, равный как арксинусу, так и арккосинусу.

Интеграл, равный как арктангенсу, так и арккотангенсу.

Интеграл равный косекансу.

Интеграл, равный секансу.

Интеграл, равный арксекансу.

Интеграл, равный арккосекансу.

Интеграл, равный арксекансу.

Интеграл, равный арксекансу.

Интеграл, равный гиперболическому синусу.

Интеграл, равный гиперболическому косинусу.

Интеграл, равный гиперболическому синусу, где sinhx - гиперболический синус в ангийской версии.

Интеграл, равный гиперболическому косинусу, где sinhx - гиперболический синус в ангийской версии.

Интеграл, равный гиперболическому тангенсу.

Интеграл, равный гиперболическому котангенсу.

Интеграл, равный гиперболическому секансу.

Интеграл, равный гиперболическому косекансу.

Формулы интегрирования по частям. Правила интегрирования.

Формулы интегрирования по частям. Формула Ньютона-Лейбница.Правила интегрирования.

Интегрирование произведения (функции) на постоянную:

Интегрирование суммы функций:

неопределенные интегралы:

Формула интегрирования по частям

определенные интегралы:

Формула Ньютона-Лейбница

определенные интегралы:

Где F(a),F(b)-значения первообразных в точках b и a соответственно.

Таблица производных. Табличные производные. Производная произведения. Производная частного. Производная сложной функции.

Если x - независимая переменная, то:

Таблица производных. Табличные производные."таблица производный"-да, к сожалению, именно так их и ищут в интернете

Производная степенной функции

Производная экспоненты

Производная сложной экспоненциальной функции

Производная экспоненциальной функции

Производная логарифмической функции

Производная натурального логарифма

Производная натурального логарифма функции

Производная синуса

Производная косинуса

Производная косеканса

Производная секанса

Производная арксинуса

Производная арккосинуса

Производная арксинуса

Производная арккосинуса

Производная тангенса

Производная котангенса

Производная арктангенса

Производная арккотангенса

Производная арктангенса

Производная арккотангенса

Производная арксеканса

Производная арккосеканса

Производная арксеканса

Производная арккосеканса

Производная гиперболического синуса

Производная гиперболического синуса в английской версии

Производная гиперболического косинуса

Производная гиперболического косинуса в английской версии

Производная гиперболического тангенса

Производная гиперболического котангенса

Производная гиперболического секанса

Производная гиперболического косеканса

Правила дифференцирования. Производная произведения. Производная частного. Производная сложной функции.

Производная произведения (функции) на постоянную:

Производная суммы (функций):

Производная произведения (функций):

Производная частного (функций):

Производная сложной функции:

Свойства логарифмов. Основные формулы логарифмов. Десятичные (lg) и натуральные логарифмы (ln).

Основное логарифмическое тождество

Покажем как можно любую функцию вида a b сделать экспоненциальной. Поскольку функция вида е х называется экспоненциальной, то

Любая функция вида a b может быть представлена в виде степени десяти

Натуральный логарифм ln (логарифм по основанию е = 2,718281828459045…) ln(e)=1; ln(1)=0

Ряд Тейлора. Разложение функции в ряд Тейлора.

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=1:

При использовании рядов, называемых рядами Тейлора, смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Ряд Тейлора в окрестности точки a имеет виды:

1) , где f(x) - функция, имеющая при х=а производные всех порядков. R n - остаточный член в ряде Тейлора определяется выражением

2)

k-тый коэффициент (при х k) ряда определяется формулой

3) Частным случаем ряда Тейлора является ряд Маклорена (=Макларена) (разложение происходит вокруг точки а=0)

при a=0

члены ряда определяются по формуле

Условия применения рядов Тейлора.

1. Для того, чтобы функция f(x) могла быть разложена в ряд Тейлора на интервале (-R;R) необходимо и достаточно, чтобы остаточный член в формуле Тейлора (Маклорена (=Макларена)) для данной функции стремился к нулю при k→∞ на указанном интервале (-R;R).

2. Необходимо чтобы существовали производные для данной функции в точке, в окрестности которой мы собираемся строить ряд Тейлора.

Свойства рядов Тейлора.

    Если f есть аналитическая функция, то ее ряд Тейлора в любой точке а области определения f сходится к f в некоторой окрестности а.

    Существуют бесконечно дифференцируемые функции, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности а. Например:

Ряды Тейлора применяются при аппроксимации (приближение - научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми) функции многочленами. В частности, линеаризация ((от linearis - линейный), один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной.) уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.

Таким образом, практически любую функцию можно представить в виде полинома с заданной точностью.

Примеры некоторых распространенных разложений степенных функций в ряды Маклорена (=Макларена,Тейлора в окрестностях точки 0) и Тейлора в окрестностях точки 1. Первые члены разложений основных функций в ряды Тейлора и Макларена.

Примеры некоторых распространенных разложений степенных функций в ряды Маклорена(=Макларена, Тейлора в окрестностях точки 0)

Примеры некоторых распространенных разложений в ряды Тейлора в окрестностях точки 1