Планеты солнечной системы с атмосферой. Какая планета не имеет атмосферы? Подробный разбор

Атмосфера Земли – оболочка из газов, окружающая Земли. Атмосфера нашей планеты играет огромную роль в жизни планеты и человека в частности. Наша атмосфера это удивительное явление, которое нигде прежде не встречалось. Атмосфера нашей планеты достигает высоты 900 км. и защищает нашу жизнь от разрушительных сил космоса. Также она поддерживает жизнь и внутри планеты, создавая нам благоприятные условия для жизни. Без атмосферы наша жизнь была бы невозможна

Атмосфера Земли. Поддержание жизни

Атмосфера Земли, если верить одной и жизни, появилась не сразу, а спустя большой промежуток времени формирования планета. Как известно жизнь во Вселенной, на данный момент, существует только на нашей планете и огромную роль в поддержании жизни на Земле играет её атмосфера. Все со школы знают, что в атмосфере содержится необходимый всем живым существам воздух для поддержания жизни, но это далеко не все, что делает для нас наша атмосфера. Древняя Земля не имела ни атмосферы и ничего другого, все начало появляться со временем.

Многие слышали о парниковом эффекте , но не все знают что это такое. Из-за парникового эффекта на нашей планете возможно глобальное потепление. Парниковый эффект осуществляет наша атмосфера, когда солнечные лучи проходят через атмосферу и отражаются от , атмосфера задерживает газы внутри себя, нагревая воздух и повышая температуру. Газы, содержащиеся в атмосфере, не дают солнечным лучам возвращаться обратно в космос, но это происходит не со всеми лучами, иначе на нашей Земле температура бы повышалась постоянно. Атмосфера делает это таким образом, чтобы не нарушить нашу привычную температуру. Именно из-за парникового эффекта на планете Венера самая высокая температура воздуха во всей Солнечной системе потому, что атмосфера там очень плотная и практически не выпускает солнечное тепло обратно в космос.

Воздушная оболочка планеты защищает нас от смертоносных ультрафиолетовых лучей исходящих от Солнца. Ультрафиолетовые лучи убили бы все живое на нашей планете не будь у нас Атмосферы, а точнее её особого слоя – озонового. Именно это слой не дает лучам попасть в атмосферу. Но этот защитный слой можно легко разрушить, над поверхностью Антарктики была замечена большая озоновая дыра . Ученые установили, что наш озоновый слой разрушает хлорофторуглекислый газ, содержащийся в аэрозолях и в холодильном оборудовании. На снимке ниже хорошо видная озоновая дыра. Ученые считают, что озоновая дыра постоянно увеличивается в размерах и ставит жизнь на планете под угрозу. Для предотвращения этого необходимо использовать топливо не вызывающего большого дыма.

Помимо всего, наша атмосфера обладает удивительным свойством. Благодаря ей мы можем общаться. Да да, именно благодаря особой структуре атмосферы звуковые волны свободно распространяются в ней и мы можем слышать различные звуки. Наша Атмосфера позволяет нам слышать друг друга, чего бы мы не смогли делать, если бы атмосферы не существовало.

Строение Атмосферы

Атмосфера имеет слоистое строение, границ между разными слоями не четкие и можно заметить большие перепады температуры в слоях атмосферы.

Начнем перечисление слоев сверху вниз:

  1. Первый слой – Магнитосфера. Эта сфера не содержит воздуха, но она входим в состав атмосферы. В этом слое летает большое количество земных спутников.
  2. Второй слой – Экзосфера (460-500 км. от поверхности планеты) практически не содержит газов, в этом слое можно найти спутники погоды
  3. Третий слой – Термосфера (80-460 км.) в этом слое очень большая температура которая может достигать 1700ºC
  4. Четвертый слой – Мезосфера (50-80 км.) в этом слое чем выше вы находитесь, тем ниже температура. Именно в этом слое сгорают метеориты или другие космические тела, попавшие в атмосферу
  5. Пятый слой – Стратосфера (15-40 км.) содержит озоновый слой планеты. Здесь обычно летают истребители и реактивные самолеты, так как видимость в этом слое отличная и погодные условия не создают никаких помех.
  6. Шестой слой – Тропосфера (9-15 км.) именно в этом слое формируется погода, так как здесь содержится большое количество водяных паров и пыли. Чем выше вы находитесь, тем ниже температура

Состав атмосферного воздуха всем давно известен, это: Азот (78%), Кислород(21%) и Различные газы (1%).

Атмосферное давление – давно известное понятие. Атмосфера у имеет большие размеры очень огромна и, естественно, она имеет массу и оказывает давление на поверхность планеты. Атмосферное давление измеряется, обычно, ртутным столбом. Места где атмосферное давление выше, ртуть в столбике поднимается выше. Нормальное для нас давление равно 766 мм. ртутного столба. Атмосферное давление не одинаково во всех районах Земли, нередко бывает, что в местах равно возвышенных над уровнем моря имеется разное атмосферное давление.

Долгие годы ученые задаются вопросами, касающимися планетных атмосфер. Так, почему планеты, гравитация которых гораздо слабее, чем на нашей, имеют давление атмосферы, в сотни раз превышающее земное (например, Венера)? С другой стороны, существуют планеты, такие как Титан, имеющие всемеро меньшую гравитацию, однако атмосфера здесь в четыре раза плотней, чем на Земле. Случается и так, что некоторые небесные тела с гравитацией всего лишь втрое слабее земной, обладают атмосферой, стократно разреженнее. В чем же причины? Выдвинуто великое множество гипотез на этот счет, однако характер их взаимоисключающ.

Астрономы из андалусского Института астрофизики во главе с Хосе Луис Ортисом при помощи трех телескопов детально пронаблюдали за поверхностью Макемаке в свете звезды, ставшей на воображаемую линию между ней и нашей планетой, при этом на короткое время затмившей ее. В итоге наблюдения достоверно показали: карликовая планета Макемаке атмосферы не имеет.

Как пояснил сам Хосе Луис Ортис, Макемаке, проходя между звездой и Землей, временно загородила ее свет от нас, в результате звезда сначала исчезла из виду, а затем вновь внезапно появилась, что указывает на отсутствие какой-либо значимой атмосферы на карликовой планете. До сих пор Макемаке считалась замерзшим миром с орбитой, расположенной во внешних областях Солнечной системы и имеющей по подобию близкого к нему Плутона полноценную глобальную атмосферу, хотя и тонкую.

Макемаке - карликовая планета, которая была открыта в 2005 году. Ее размер составляет около двух третей диаметра Плутона. Однако она вращается вокруг Солнца по гораздо удаленной орбите: дальше Плутона, но ближе Эриды. Диаметр планеты, согласно последним данным, варьирует в промежутке от 1 430 плюс-минус 9 км до 1 502 плюс-минус 45 км. Не исключен тот факт, что обе цифры верны, а форма планеты не совсем правильна. Альбедо планеты при этом равняется 0,77 плюс-минус 0,03 (относительно близко к Плутону), что находится в примерном соответствии с грязным снегом и говорит о сходстве данных объектов. Плотность планеты также составляет не ниже 1,7 плюс-минус 0,3 г/см³ (на 15% меньше, чем у Плутона). Но, несмотря на это, на поверхности Макемаке максимальное атмосферное давление не превышает 12 миллиардных земного. Это практически вакуум, что особенно странно, исходя из тех соображений, что температура планеты (половина поверхности Макемаке, по меньшей мере, является нагретой до 50 К) - довольно высока для транснептунового объекта без атмосферы, который относительно прохладного Плутона находится в значительном удалении от Солнца.

По мнению ученых, это может быть связано с отсутствием одного из важнейших у таких объектов источников атмосферных газов как азотный снег или же огромным наклоном оси планеты. В таком случае формирование устойчивой атмосферы весьма затруднительно.

И все же не исключен тот факт, что все же кое-где на Макемаке атмосфера существует, например, в районах, обладающих меньшим альбедо, в которых не исключен переход поверхностных веществ в газообразное состояние. Проверим эту теорию во время следующего затмения.

нравится


4,6 миллиардов лет назад в нашей Галактике из облаков звёздной материи начали образовываться сгущения. Всё, более уплотняясь и сгущаясь, газы нагревались, излучая тепло. С увеличением плотности и температуры начались ядерные реакции, превращая водород в гелий. Таким образом, возник очень мощный источник энергии - Солнце.

Одновременно с увеличением температуры и объёма Солнца, в результате объединения фрагментов межзвёздной пыли в плоскости, перпендикулярной к оси вращения Звезды, создавались планеты и их спутники. Формирование Солнечной Системы завершилось около 4 миллиардов лет назад.



На данный момент Солнечная Система имеет восемь планет. Это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептон. Плутон — карликовая планета, крупнейший известный объект пояса Койпера (является большим поясом осколков, подобным поясу астероидов). После обнаружения в 1930 году считался девятой планетой. Положение изменилось в 2006 году с принятием формального определения планеты.




На самой ближайшей к Солнцу планете - Меркурии дождей не бывает никогда. Это обусловлено тем фактором, что атмосфера у планеты настолько разрежена, что ее просто невозможно зафиксировать. Да и откуда там взяться дождям, если дневная температура на поверхности планеты порой достигает 430º по Цельсию. Да уж, не хотелось бы там оказаться:)




А вот на Венере постоянно идут кислотные дожди, поскольку облака над этой планетой состоят не из живительной воды, а из смертоносной серной кислоты. Правда, поскольку температура на поверхности третьей по счету планеты достигает 480º по Цельсию, то капли кислоты испаряются раньше, чем долетят к планете. Небо над Венерой пронзают большие и страшные молнии, но света и грохота от них больше, чем дождя.




На Марсе, по мнению ученых, давным-давно природные условия были такими же, как и на Земле. Миллиарды лет назад атмосфера над планетой была намного плотнее, и вполне возможно, что обильные дожди наполняли эти реки. Но сейчас над планетой очень разреженная атмосфера, а фотографии, переданные спутниками-разведчиками, свидетельствуют о том, что поверхность планеты напоминает пустыни юго-запада США или Сухие долины в Антарктиде. Когда часть Марса укутывает зимняя пора, над красной планетой появляются тонкие облака, содержащие двуокись углерода, а иней покрывает мертвые скалы. Ранним утром в долинах бывают такие густые туманы, что кажется, что вот-вот пойдет дождь, но напрасны такие ожидания.

Кстати температура воздуха днём на Мрсе 20º по Цельсию. Правда ночью может опускаться до - 140:(




Юпитер - самая большая из планет и является гигантским газовым шаром! Этот шар почти полностью состоит из гелия и водорода, но не исключено, что глубоко внутри планеты находится маленькое твердое ядро, окутанное океаном из жидкого водорода. Тем не менее, Юпитер со всех сторон окружают цветные полосы облаков. Некоторые из этих облаков состоят даже из воды, но, как правило, в подавляющем большинстве их образуют застывшие кристаллики аммиака. Время от времени над планетой пролетают сильнейшие ураганы и бури, несущие за собой снегопады и дожди из аммиака. Вот где бы провести Магический цветок.

Раздел «Атмосфера»

Что такое атмосфера? В переводе с греческого атмосфера расшифровывается как "паровая сфера" (от греческих слов ατμός - «пар» и σφαῖρα - «сфера»). Иными словами: это газовая оболочка окружающая небесное тело и удерживаемая его гравитацией. Верхняя граница атмосферы размыта и плавно переходит в межпланетное пространство, потому многими учёными за атмосферу принимается газовая оболочка, вращаемая с небесным телом как единое целое. Нижняя же её граница граничит с литосферой и у некоторых планет - с гидросферой. У газовых гигантов, состоящих в основном из различных газов нижние границы атмосферы такие же расплывчатые как и верхние, а потому газовой оболочкой считаются лишь самые верхние области таких планет.

Атмосферы есть у планет, некоторых спутников планет, звёзд, комет и даже крупных астероидов. Есть атмосфера и у планеты Земля. Доказательствами её существования служат:

Наличие на высотах 20-25 км. перламутровых облаков;

Наличие на высотах более 75 км. серебристых облаков;

Сгорание на высотах более 85 км. метеоров и метеоритов, которое наблюдатели называют "падающими звёздами";

Явление сумерек, которое наблюдается на высотах более 220 км.;

Характеристики атмосфер разных небесных тел различны и зависят от размера, массы, скорости вращения и других параметров небесного тела, которое эта атмосфера окружает, а также от жизнедеятельности живых организмов. Например, чем массивнее планета и чем меньше её радиус, тем надёжнее она удерживает даже такие лёгкие газы, как водород, гелий и др. А температура поверхности планеты влияет на энергию хаотического теплового движения атомов и молекул газа. Чем она выше, тем выше скорость частиц, поэтому достигнув второй космической скорости, частицы навсегда покидают планету, причём первыми улетучиваются лёгкие газы.

На начальном этапе эволюции небесного тела на состав атмосферы значительное влияние оказывают параметры звезды, вокруг которой формируется планета и последующий выход внешних газов.

А теперь рассмотрим краткие характеристики атмосфер некоторых планет, их крупных спутников и звёзд. И начнём с нашей родной планеты - Земли.

Основные характеристики земной атмосферы следующие: простирается она на 2-3 тыс.км; состоит из смеси различных газов, называемой воздухом, основными составляющими которого являются азот, кислород и аргон. Плотность, давление, влажность, температура воздуха на различных высотах колеблются в широких пределах, что позволяет говорить о её неоднородной структуре. Суммарная масса всего воздуха составляет одну миллионную часть Земли или 5,1-5,3×10 18 кг (из которых 5,1352±0,0003×10 18 кг приходится на сухой воздух и 1,27×10 16 кг на водяные пары), молярная масса сухого воздуха - 28,966, среднее давление на уровне моря при 0°C - 101,325 кПа, критическая температура - 140,7°C; критическое давление - 3,7 МПа; Cp при 0°C - 1,0048×10 3 Дж/(кг·К), Cv - 0,7159×10 3 Дж/(кг·К) (при 0°C).

Атмосфера нашей планеты вращается в направлении с запада на восток, что сказывается на её форме, которая приобретает вид эллипсоида вращения. По этой причине, кстати, атмосфера у полюсов тоньше, чем у экватора.

Атмосфера земли оказывает огромное влияние на биосферу планеты. Как известно из астрономии всё космическое пространство пронизано мощным ультрафиолетовым и рентгеновским излучением Солнца, а также ещё более губительными космическими лучами. Подавляющую часть этого смертельного для всего живого излучения задерживают верхние слои атмосферы, в результате чего проявляются такие удивительные электрические явления, как полярные сияния. Кислород, входящий в состав земной атмосферы, используют для дыхания подавляющее большинством видов живых организмов, а углекислый газ - растения, водоросли и цианобактерии в процессе фотосинтеза.

Велика её роль: в защите планеты от гостей из космоса - метеоритов, которые просто сгорают в верхних разряженных её слоях; в формировании земного климата, посредством регуляции сезонных колебаний температур и сглаживания суточных; в процессах фотосинтеза и обмена энергией, т.к. именно с помощью газов входящих в её состав эти процессы имеют место быть; в круговороте воды в природе, выпадения осадков и процессах физического и химического выветривания, последние из которых формируют экзогенные формы рельефа.

Атмосферы таких внутренних планет Солнечной системы как Венера и Марс в основном состоят из двуокиси углерода. Остальные газы в их газовых оболочках присутствуют в очень небольшом количестве.

Так, например, концентрация в атмосфере Марса углекислого газа (другое название двуокиси углерода) достигает 95%. На втором месте по распространенности стоит азот (3%), затем следует аргон и кислород. Остальные газы, такие как оксид углерода, озон и метан присутствуют в минимальных "следовых" количествах.

Давление марсианской атмосферы крайне невелико и составляет лишь 1/160 часть от земного и меняется в широких пределах в зависимости от высоты над уровнем поверхности планеты: от 9-12 мбар в гигантской впадине Эллада до 0,1 мбар на вершине горы Олимп, и от сезона года, т.к. зимой часть входящей в состав атмосферы углекислоты замерзает, составляя значительную часть полярных шапок Марса.

Несмотря на малую мощность в атмосфере Марса развиваются облака, сильные ветры и слабый парниковый эффект, поднимающий среднюю температуру приземного воздуха не более чем на 5°K.

Концентрация углекислого газа в атмосфере Венеры выше чем в атмосфере Марса - 97%. Концентрация же азота такая же и составляет 3%, остальных газов - сотые и тысячные доли процента.

Давление венерианской атмосферы в тысячи раз выше чем марсианской и в 95 раз выше чем земной. Отсюда колоссальная плотность, всего в 10 раз меньшая плотности воды и общая масса, превышающая массу атмосферы Земли в 95 раз. Из-за очень плотной атмосферы на Венере царит страшная жара с температурой под +480°C, причем суточные колебания температуры очень невелики. Формирование столь плотной и горячей атмосферы вызвано наличием огромного количества углекислого газа, которое в свою очередь сформировалось посредством превращения под действием высоких температур карбонатных пород в силикатные, с выделением СО 2 , который переходит в атмосферу. Таким образом на Венере наблюдается неконтролируемый и стабильный парниковый эффект.

В отличии от газосферы Марса газовая сфера Венеры неоднородна: в ней выделяются 4 слоя, различающиеся по плотности, температуре и давлению: тропосфера, мезосфера, термосфера и экзосфера. В пределах первых двух существуют облака, состоящие из 75-80-процентной серной кислоты с примесями соляной и плавиковой кислот.

Атмосфера самой маленькой планеты Солнечной планеты - Меркурия - состоит из гелия, водорода, кислорода и натрия, но в очень небольших количествах. Газовая оболочка планеты чрезвычайно разряжена: её давление у поверхности в полмиллиарда меньше чем давление у поверхности Земли.

За счет малой плотности атмосферы на Меркурии наблюдаются значительные суточные колебания температур: разница между её ночными и дневными значениями может оставлять 500К. Облака в таких условиях не формируются.

Атмосферы внешних планет состоят из низкомолекулярных газов, таких как, водород и гелий, т.к. большая сила тяжести на таких планетах способна удерживать даже газы с низкой молекулярной массы.

Спутники планет обладают весьма разнообразными атмосферами. Так, в атмосферах Титана и Тритона преобладает азот, в атмосфере Луны - натрий, Европы - кислород, Ио - сера, Энцелада - водяной пар.

Звёздные атмосферы - это внешние области звезды, расположенные над звёздным ядром, зоной радиации и зоной конвекции. Внутри звёздной атмосферы различают несколько подобластей, обладающих различными свойствами.

Первой из них, лежащей непосредственно над зоной конвекции, является фотосфера. Именно эту область видит наблюдатель с Земли смотрящий на Солнце. Толщина фотосферы от 300 до десятков тысяч километров, но всегда намного меньше диаметра звезды.

Над фотосферой лежит хромосфера, толщина которой практически у всех звёзд одинакова и составляет 10 тыс. км.

Верхняя область звёздных атмосфер носит название короны. Это самая протяженная и разряженная, а также одна из наиболее горячих областей звёзд. Например, корона Солнца простирается до границ Солнечной системы и достигает двух миллионов кельвинов на расстоянии 70 тыс. км. от своей нижней границы.

Разные звёзды не обязательно состоят из всех трёх слоёв. Так у большинства гигантов и сверхгигантов нет корон, у многих звёзд нет переходных областей между слоями.

Для более подробного описания атмосфер разных небесных тел были созданы дополнительные главы (страницы):

Глава 6. Звездные атмосферы

У всех планет земной группы - Меркурия, Венеры, Земли и Марса есть общее в строении -литосфера, которая как бы отвечает твердому агрегатному состоянию вещества. У трех планет: Венеры, Земли и Марса имеется атмосфера, а гидросфера установлена пока лишь на нашей планете. На рис. 5 показано строение планет земной группы и Луны, а в табл. 2 -характеристика атмосферы планет земной группы.[ ...]

В нижней части атмосферы планеты стратификация близка к адиабатической (см. ), когда с1р/с1г = -др/(?а, где с2 = 7КТ/¡1 - квадрат скорости звука. Взяв, кроме уже употреблявшихся величин, 7 = = ср/су = 1,3 и /1 = 44 (углекислый газ), найдем, что в нижней части атмосферы планеты г « 1500 км, что примерно вчетверо меньше радиуса планеты.[ ...]

Малая плотность планет-гигантов (у Сатурна она меньше плотности воды) объясняется тем, что они в основном состоят из газообразных и жидких веществ, преимущественно водорода и гелия. Этим они похожи на Солнце и многие другие звезды, водорода и гелия в массе которых примерно 98 %. Атмосфера планет-гигантов содержит различные соединения водорода, например метан и аммиак.[ ...]

1.1
2

Общее увеличение концентрации С02 в атмосфере планеты часто рассматривают как источник опасности для климата. Поглощение тепловых лучей диоксидом углерода может помешать их отражению от поверхности Земли и привести к общему повышению температуры. Однако данных по этому вопросу нет; иногда указывается, что такой эффект может быть компенсирован уменьшением излучаемого солнцем тепла вследствие увеличения содержания в воздухе пыли и аэрозолей.[ ...]

Ракеты, выносящие приборы за пределы атмосферы планеты и ее магнитосферы, позволяют преодолеть и основную слабость земной астрономии - невозможность наблюдений с Земли области спектра электромагнитных волн короче 300 нм, которые полностью поглощаются в толще воздушной оболочки. На наших глазах рождаются новые направления древней науки - рентгеновская астрономия, гамма-астрономия, ведутся наблюдения во всем спектре излучений, посылаемых Вселенной. В число этих новых направлений, тесно связанных с экологическими проблемами, входят следующие.[ ...]

Суммарное количество диоксида углерода в атмосфере планеты составляет не менее 2,3- 1012т, в то время как содержание его в Мировом океане оценивается в 1,3-10й т. В литосфере в связанном состоянии находится 2-1017 т диоксида углерода. Значительное количество диоксида углерода содержится и в живом веществе биосферы (около 1,5-1012 т, т.е. почти столько, сколько во всей атмосфере).[ ...]

Но и планетная астрономия ясно выявляет, что атмосферы планет не могут быть объяснены (как это ясно теперь и для земной атмосферы) на основании их химического состава как производные всемирного тяготения и солнечного излучения два фактора, которые астрономами до сих пор только и принимаются во внимание. Из последних сводок английских и американских астрономов Ресселя, Вильдта, Сп. Джонса, Джинса и других ясно это вытекает.[ ...]

Нельзя забывать, что биогенное происхождение атмосферы нашей Земли является эмпирическим обобщением, т. е. логическим выводом из точных данных научного наблюдения, причем химический анализ тропосферы и стратосферы резко противоречит тому логическому выводу, который вытекает из астрономической теории происхождения атмосфер планет в приложении ее к Земле. Если бы эта теория была верна, то количество кислорода с высотой должно было бы уменьшаться по отношению к азоту, тогда как на больших высотах (до 40 км), где это должно было бы резко сказываться, такого уменьшения кислорода по отношению к азоту не наблюдается. Отношение О2 к N2 остается неизменным, как в высоких слоях тропосферы, так и в нижних слоях стратосферы.[ ...]

Если был бы известен точный химический состав атмосферы Венеры, сравнивая найденное значение п с показателем адиабаты - ср/су для смеси газов, составляющих атмосферу планеты, можно было бы судить о характере стратификации атмосферы. При п [ ...]

Взвешенные твердые частицы, по First (1973), поступают в атмосферу планеты в результате естественных процессов (до 2200- 10а т/год частиц размером менее 20 мкм) и деятельности человека (до 415- 106 т/год). Следует при этом отметить, что поступление частиц в воздух в результате деятельности человека приурочено в основном к местам его расселения и особенно большим и крупным городам. Твердые взвеси как результат этой деятельности образуются при сжигании различных видов топлива, дезинтеграции твердых материалов, при перегрузке и транспортировке пылящих материалов, поднимаются с поверхности городской территории. Основными источниками поступления этих веществ в воздушный бассейн города являются различные крупные и мелкие энергетические установки, предприятия металлургии, машиностроения, стройматериалов, коксохимии и транспорт.[ ...]

Излишне говорить, чтод существование свободного кислорода в атмосфере планет может свидетельствовать о наличии на них жизни: на Земле возникновение кислородной атмосферы было тоже связано с зарождением жизни. Так, изучение озона входит в контакт с одной из замечательных проблем современной космогонии.[ ...]

Фотохимические реакции не являются единственными реакциями в атмосфере. Там происходят многочисленные превращения с участием десятков тысяч химических соединений, течение которых ускоряется радиацией (солнечная радиация, космическое излучение, радиоактивное излучение), а также каталитическими свойствами присутствующих в воздухе твердых частиц и следов тяжелых металлов. Значительные изменения претерпевают попадающие в воздух диоксид серы и сероводород, галогены и межгалогенные соединения, оксиды азота и аммиак, альдегиды и амины, сульфиды и меркаптаны, нитросоединения и олефины, полиядерные ароматические углеводороды и пестициды. Иногда эти реакции могут служить причиной не только качественных, но и количественных изменений в глобальном составе атмосферы планеты, приводящих к изменению климата на Земле. Аккумулируясь в верхних слоях атмосферы, фтор-хлоруглеводороды фотолитически разлагаются с образованием оксидов хлора, которые взаимодействуют с озоном, уменьшая его концентрацию в стратосфере . Аналогичный эффект наблюдается и при реакциях озона с оксидами серы, оксидами азота и углеводородами. В результате разложения вносимых в почву азотных удобрений происходит эмиссия в атмосферу оксида азота N0, который взаимодействует с атмосферным озоном, превращая его в кислород. Все эти реакции уменьшают содержание озона в слоях атмосферы на высоте 20-40 км, которые защищают приземный слой атмосферы от солнечной радиации высокой энергии. Подобные превращения приводят к глобальным изменениям климата планеты.[ ...]

Несмотря на столь высокие уровни З.а., РФ не является главным загрязнителем атмосферы планеты (табл. 18).[ ...]

Существует гипотеза неорганического происхождения свободного кислорода в атмосфере Земли. Согласно этой гипотезе, существование в верхних слоях атмосферы процесса разложения молекул воды на водород и кислород под действием жестких космических излучений должно иметь следствием постепенную утечку легкого, подвижного водорода в космическое пространство и накопление в атмосфере свободного кислорода, что без всякого участия жизни должно восстановительную первичную атмосферу планеты превратить в окислительную. По расчетам, этот процесс мог за 1-1,2 млрд. лет создать на Земле окислительную атмосферу. Но он неизбежно идет и на других планетах Солнечной системы, причем в течение всего времени их существования, а это примерно 4,5 млрд. лет. Тем не менее ни на одной планете нашей системы, кроме Земли и, с несравненно меньшим содержанием кислорода, Марса, практически нет свободного кислорода и до сих пор их’атмосферы сохраняют восстановительные свойства. Очевидно, и на Земле этот процесс мог повысить содержание окислов углерода и азота в атмосфере, но не настолько, чтобы сделать ее окислительной. Так что наиболее правдоподобной остается гипотеза, связывающая наличие на Земле свободного кислорода с деятельностью фотосинтезирующих организмов.[ ...]

Для запахов совершенно не изучена их роль в переносе в газообразной форме в атмосферу таких более тяжелых атомов, как мышьяк, сера, селен и др. Сейчас можно это только отметить. Как я уже указывал, химическое количественное изучение атмосфер планеты является одной из отсталых геохимических проблем.[ ...]

В заключение полезно привести некоторые сведения о магнитосферах и ионосферах других планет. Отличия от земной ионосферы обусловлены химическим составом атмосфер планет и разницей расстояний от Солнца. Днем максимум электронной концентрации на Марсе составляет 2 105 см-3 на высоте 130- 140 км, на Венере - 5 106 см-3 на высоте 140-150 км. На Венере, лишенной магнитного поля, днем существует низко расположенная плазмопауза (300 км), что обусловлено действием солнечного ветра. На Юпитере с его сильным магнитным полем обнаружены полярные сияния и радиационный пояс, значительно более интенсивные, чем на Земле.[ ...]

Диоксид углерода СОг является не токсичным, но вредным веществом в связи с фиксируемым повышением его концентрации в атмосфере планеты и его влиянием на изменение климата (см. гл. 5). Предпринимаются шаги по регламентированию его выброса объектами энергетики, промышленности и транспорта.[ ...]

Прогрессивное увеличение количества кислорода в воде вследствие деятельности фотосинтезирующих организмов и его диффузия в атмосферу вызвали изменения в химическом составе оболочек Земли, и, прежде всего атмосферы, что в свою очередь сделало возможным быстрое распространение жизни по планете и появление более сложно организованных жизненных форм. По мере увеличения содержания кислорода в атмосфере формируется достаточно мощный слой озона, который защищает поверхность Земли от проникновения жесткого ультрафиолетового и космического изучений. В таких условиях жизнь смогла продвинуться к поверхности моря. Развитие механизма аэробного дыхания сделало возможным появление многоклеточных организмов. Первые такие организмы появились после того, как концентрация кислорода в атмосфере планеты достигла 3%, что произошло 600 млн лет назад (начало кембрийского периода).[ ...]

Газовая оболочка спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Верхние слои атмосферы частично поглощают, частично рассеивают эти лучи. Атмосфера защищает нас и от «звездных осколков». Метеориты, в подавляющем большинстве не превышающие по величине горошину, под влиянием земного притяжения с огромной скоростью (от 11 до 64 км/с) врезаются в атмосферу планеты, раскаляются там в результате трения о воздух и на высоте около 60-70 км по большей части сгорают. Атмосфера защищает Землю и от крупных космических осколков.[ ...]

Сложившийся характер потребления сырьевых ресурсов приводит к неудержимому росту объема отходов. Огромное количество их попадает в атмосферу в виде пылегазовых выбросов и со сточными водами в водоемы, что отрицательно сказывается на состоянии окружающей среды. Более всего загрязняют атмосферу теплоэнергетика, черная и цветная метллургия, химическая промышленность.[ ...]

Перед изложением теории следует упомянуть идею неконтролируемого «парникового эффекта», предложенную Рейсулом и Де Бергом в связи с теорией эволюции атмосфер планет. Предварительно следует объяснить столь сильные различия между атмосферами Венеры, Земли и Марса.[ ...]

Анализ динамики спуска автоматической межпланетной станции (АМС) на парашюте дает дополнительное средство контроля внутренней согласованности данных об атмосфере планеты, если одновременно производятся измерения, по крайней мере, двух любых термодинамических параметров атмосферы из трех, связанных уравнением состояния газа. Описываемая ниже методика будет применена в целях иллюстрации ее использования для анализа и проверки согласованности данных, полученных во время спуска АМС «Венера-4» (см. ).[ ...]

Катастрофичной в данное время является вырубка1 тропических лесов, которые являются одним из крупнейших источников кислорода, жизненно важного ресурса нашей планеты, возобновляемого биотой. Тропические леса исчезают в силу того, что население в этих районах быстро увеличивается. Из-за угрозы голода люди в погоне за небольшими урожаями используют под поля и огороды любые клочки земли, вырубая для этого древние тропические леса, деревья, кустарники. В случае уничтожения лесов в экваториальной зоне, Амазонии и, как следствие, снижения содержания кислорода в атмосфере планеты человечество и само существование биосферы2 окажутся под угрозой гибели от гипоксии.[ ...]

Подчеркнем теперь, что все указывавшиеся в этом параграфе формулы содержали лишь шесть истинно «внешних» размерных параметров: усваиваемый поток солнечной радиации q, радиус планеты а, угловая скорость ее вращения

При этом центральное место на переговорах по глобальным климатическим изменениям занимают США не столько из-за политического или экономического веса, сколько из-за доли выбросов в атмосферу планеты; вклад этой страны составляет 25%, так что любые международные соглашения без их участия почти бессмысленны. В отличие от европейских стран США крайне осторожны и неактивны, что связано с ценой, которую они должны будут заплатить за снижение выбросов С02.[ ...]

С середины 1970-х гг. Голицын занялся разработкой теории конвекции, в том числе с учетом вращения. Эта тематика имеет приложения ко многим природным объектам: к мантии Земли и ее жидкому ядру, атмосферам планет и звезд, к океану. Для всех этих объектов получены простые формулы, объясняющие данные наблюдений или результаты численного моделирования. Им развита теория и организован цикл экспериментальных работ по конвекции вращающейся жидкости. На этой основе объяснены сила ветров и размеры тропических и полярных ураганов.[ ...]

То же происходит в странах Африки, в Индонезии, на Филиппинах, в Таиланде, Гвинее. Тропические леса, покрывающие 7% земной поверхности в районах, близких к экватору, и играющие важнейшую роль в обогащении атмосферы планеты кислородом и в поглощении углекислого газа, сводятся со скоростью 100 тыс. км2 в год.[ ...]

Мы еще не располагаем вполне убедительными доказательствами существования жизни вне Земли, или, как ее называет Ледерберг (1960), «экзобиологии», но все то, что мы узнали о среде на Марсе и на других имеющих атмосферу планетах, не исключает такой возможности. Хотя температурные и другие физические условия среды на этих планетах экстремальны, они не выходят за пределы толерантности некоторых из самых устойчивых обитателей Земли (бактерий, вирусов, лишайников и др.), особенно если считать вероятным наличие более мягкого микроклимата под поверхностью или в защищенных областях. Можно, однако, считать установленным, что на других планетах солнечной системы нет крупных «пожирателей кислорода», таких, как люди или динозавры, так как в атмосфере этих планет кислорода очень мало или нет совсем. Теперь ясно, что зеленые области и так называемые «каналы» Марса - это не растительность и не работа разумных существ. Однако на основе данных спектроскопических наблюдений темных областей Марса в инфракрасных лучах можно считать, что там имеется органическое вещество, а недавние автоматические межпланетные станции («Маринер-6» и «Маринер-7») обнаружили на этой планете аммиак, имеющий, возможно, биологическое происхождение.[ ...]

Изучение океана как физической и химической системы продвигалось значительно быстрее, чем его изучение как биологической системы. Гипотезы о происхождении и геологической истории океанов, вначале спекулятивные, приобрели прочную теоретическую основу.[ ...]

В этой связи следует остановиться на имеющихся теоретических моделях развития ядер-ных инцидентов в военном аспекте. Модели учитывают количество энергии,накопленной в виде термоядерных зарядов и на атомных электростанциях, и дают ответ на вопрос о том, как изменились бы климатические условия в масштабе всей планеты по истечении одного года после ядерной войны. Конечные вьюоды сводились к следующему. Реакция атмосферы приведет к ситуации, аналогичной ситуации с атмосферой на Марсе, где пыль продолжает разноситься по всей атмосфере планеты спустя 10 дней после начала пыльных бурь, что резко ослабляет солнечную радиацию. Вследствие этого марсианская суша остывает на 10 - 15 °С, а запыленная атмосфера нагревается на 30 °С (по сравнению с обычными условиями). Это признаки так называемой "ядерной зимы", конкретные показатели которой сегодня трудно предсказать. Однако совершенно очевидно, что условия для существования высших форм организации живой материи будут резко изменены.[ ...]

В настоящее время тенаксы пользуются чрезвычайно большой популярностью у аналитиков: их применяют для концентрирования из воздуха (и воды после выдувания примесей, см. раздел 6) микропримесей ЛОС в газовой хроматографии и ГХ/МС-анализе при исследовании воздуха городов и жилых помещений, определении качества воздуха рабочей зоны и административных зданий, выхлопных газов автотранспорта и выбросов промышленных предприятий, атмосферы отсеков орбитальных космических аппаратов и подводных лодок, атмосферы планет и др.[ ...]

В концепции «отрицательной вязкости» одним из основных является вопрос, откуда черпают энергию сами крупномасштабные вихри, поддерживающие зональную циркуляцию, в данном случае - дифференциальное вращение. Существует принципиальная возможность , что энергия к ним поступает непосредственно от мелкомасштабной конвекции, однако физически этот механизм не вполне ясен и тем более трудно как-то количественно оценить его эффективность. К подобного рода возможностям от носится и гипотеза о неизотропно-сти турбулентной вязкости. Другая возможность, осуществляющаяся в атмосферах планет, заключается в переносе не кинетической, а потенциальной энергии с последующим превращением ее в кинетическую. Как уже говорилось, благодаря влиянию собственного вращения Солнца средняя температура на определенных горизонтальных (эквипотенциальных) уровнях может быть неодинаковой на всех широтах, что должно приводить к возникновению крупномасштабных движений, переносящих в конце концов тепло к более холодным широтам . Эта вторая возможность по существу перекликается с идеями Фогта и Эддингтона . Все эти обстоятельства позволяют говорить о близости некоторых основных черт атмосферной циркуляции на Солнце и планетах.[ ...]

Регламентации и ограничения устанавливаются на местном, региональном и федеративном уровнях. Они должны иметь совершенно определенную территориальную привязку. В долгосрочном планировании следует использовать прогностические и даже эколого-футурологические исследования с целью выявления потенциальных регламентирующих факторов природопользования, в т. ч. лимитов выбросов веществ, в настоящее время не ограничиваемых. Так, двуокись углерода в настоящее время не отнесена к веществам, загрязняющим атмосферный воздух. По мере увеличения валового выброса этого соединения в атмосферу планеты и уменьшения суммарной фотосинтетической способности лесов, вследствие их варварской вырубки, непременно даст себя знать «парниковый эффект», который угрожает перерасти в глобальную экологическую катастрофу. Показателен в этом плане пример американской частной энергетической компании «Эпплайд энерджи сервисес», находящейся в Вирджинии, которая пожертвовала в 1988 г. 2 млн долл. на посадку деревьев в Гватемале в качестве компенсации за тепловую угольную электростанцию, которую компания строит в штате Коннектикут. Ожидается, что посаженные деревья будут поглощать примерно столько же углекислого газа, сколько новая электростанция будет выбрасывать в атмосферу, предотвращая, таким образом, возможное глобальное потепление.[ ...]

ПЛАТА ЗА ПРИРОДНЫЕ РЕСУРСЫ - денежное возмещение природопользователем общественных затрат на изыскание, сохранение, восстановление, изъятие и транспортировку используемого природного ресурса, а также потенциальных усилий общества для натурального возмещения или адекватной замены эксплуатируемого ресурса в будущем. Такая плата должна включать издержки, связанные с межресурсными связями. С эколого-экономической точки зрения эту плату следует исчислять и с учетом глобально-регионального воздействия природопользователей на природные системы (например, крупное изъятие леса ведет к нарушению не только местного водного баланса, но и всего газового состава атмосферы планеты). Существующие методики определения размеров платы пока не учитывают всех факторов, воздействующих на эколого-экономический механизм ее формирования.[ ...]

Энергия ветра - одно из наиболее древних используемых источников энергии. Она широко применялась для привода мельниц и водоподъемных устройств в глубокой древности в Египте и на Ближнем Востоке. Затем энергия ветра стала использоваться для перемещения судов, лодок, улавливаться парусами. В Европе ветряные мельницы появились в XII в. Паровые машины заставили забыть на длительное время ветряные установки. Кроме того, низкие единичные мощности агрегатов, настоящая зависимость их работы от погодных условий, а также возможность преобразовывать энергию ветра только в ее механическую форму ограничили широкое использование этого природного источника. Энергия ветра в конечном итоге - результат тепловых процессов, происходящих в атмосфере планеты. Различия плотностей нагретого и холодного воздуха - причина активных изменений воздушных масс. Первоначальным источником энергии ветра, является энергия солнечного излучения, которая переходит в одну из своих форм - энергию воздушных течений.