Виды железных руд – общая характеристика железняков. Железные руды — виды, месторождения


Железную руду человек начал добывать еще в конце II тысячелетия до нашей эры, уже тогда определив для себя преимущества железа по сравнению с камнем. С тех времен люди стали различать виды железных руд, хотя они еще не имели тех названий, что сегодня.

В природе железо - один из самых распространенных элементов, и в земной коре его содержится по разным данным от четырех до пяти процентов. Это четвертое место по содержанию после кислорода, кремния и алюминия.

Железо представлено не в чистом виде, оно в большем или меньшем количестве содержится в разного вида горных породах. И если по расчетам специалистов добывать железо из такой породы целесообразно и выгодно экономически, ее называют железной рудой.

За последние несколько столетий, на протяжении которых очень активно выплавляется сталь и чугун, железные руды истощаются - ведь металла требуется все больше и больше. Например, если в XVIII веке, на заре промышленной эры руды могли содержать и 65% железа, то сейчас нормальным считается содержание в руде 15 процентов элемента.

Из чего состоит железная руда.

В состав руды входит рудный и рудообразующий минералы, различные примеси и пустая порода. Соотношение этих составляющих отличается от месторождения к месторождению.

Рудный материал содержит главную массу железа, а пустая порода - это минеральные отложения, содержащие железо в очень малых количествах или не содержащие вовсе.

Оксиды, силикаты и карбонаты железа - самые часто встречающиеся рудные минералы железных руд.

Виды железной руды по содержанию железа и по местообразованию.

  • С низким содержанием железа или сепарированную железную руду, ниже 20%
  • Со средним содержанием железа или аглоруду
  • Железосодержащая масса или окатыши - породы с высоким содержанием железа, выше 55%

Железные руды могут быть линейными - то есть залегающие в местах разломов и изгибов земной коры. Именно они наиболее богаты железом и содержат мало фосфора и серы.

Другой вид железных руд - плоскоподобные, которые содержатся на поверхности железосодержащих кварцитов.

Красные, бурые, желтые, черные железняки.

Самым распространенным видом руды является красный железняк, который образуется безводным оксидом железа гематитом, имеющим химическую формулу Fe 2 O 3 . В гематите содержится очень высокий процент железа (до 70 процентов) и мало посторонних примесей, в частности серы и фосфора.

Красные железняки могут находиться в разном физическом состоянии - от плотного до пылевого.

Бурый железняк - это водная окись железа Fe 2 O 3 *nH 2 O. Число n может изменяться в зависимости от основы, составляющей руду. Чаще всего это лимониты. Бурые железняки, в отличие от красных, содержат меньше железа - 25-50 процентов. Их структура рыхлая, пористая, а в руде много других элементов, среди которых - фосфор и марганец. В бурых железняках содержится много адсорбированной влаги, пустая же порода - глинистая. Свое название этот вид руды получил из-за характерного бурого или желтоватого цвета.

Но несмотря на довольно низкое содержание железа, из-за легкой восстановимости перерабатывать такую руду легко. Из них часто выплавляют высокачественный чугун.

Бурый железняк чаще всего нуждается в обогащении.

Магнитными рудами называют те, которые образованы магнетитом, являющимся магнитным оксидом железа Fe 3 O 4. Название подсказывает, что эти руды имеют магнитные свойства, которые утрачиваются при нагревании.

Магнитные железняки реже встречаются, чем красные. Но железа в них может содержаться даже свыше 70 процентов.

По своей структуре он может быть плотным и зернистым, может выглядеть как кристаллы, вкрапленные в породу. Цвет магнетита - черно-синий.

Еще один вид руды, который называется шпатовым железняком. Ее рудосодержащей составляющей является карбонат железа с химическим составом FeCO 3 под названием сидерит. Другое название - глинистый железняк - это если в руде содержится значительное количество глины.

Шпатовые и глинистые железняки встречаются в природе реже других руд и содержат относительно немного железа и много пустой породы. Сидериты могут преобразовываться в бурые железняки под влиянием кислорода, влаги и осадков. Поэтому залежи выглядят так: в верхних слоях это бурый железняк, а в нижних - шпатовый железняк.

Кислород

Этот видео урок расскажет про неорганическую химию за 9 класс. Посмотрев данное видео Вы сможете изучить и узнать характеристику халькогенов и кислород.

Данный видео урок представляет общие познания строения элементов группы VIA, позволяет Вам изучить и закрепить познания о получение свойств кислорода, первого представителя данной группы.

Общая характеристика халькогенов.Кислород

Ученику просматривая данный видео урок будет понятно рассказано все основные соединения, содержащие в этой группе элементов и узнают круговорот кислорода в природе.

Какие преследуют цели в данном видео уроке. Вы сможете изучить и понять особенности строения атомов халькогенов, а также свойства и применения кислорода.

  • сформировать представления об особенностях строение элементов VIA группы;
  • развитие умений записывать уравнения реакций, отражающих химические свойства кислорода;
  • изучить способы получения кислорода, его аллотропные модификации;

Халькогены – это элементы VIA группы. Родоначальником этой группы является кислород. Кроме кислорода в эту группу входят S, Se, Te, Po. Название халькогены означает «рождающие руды». Вам уже известны руды, содержащие серу, это – пирит, или железный колчедан – FeS 2 , киноварь – HgS, цинковая обманка – ZnS. Кислород входит в состав таких руд, как корунд – Al 2 O 3 , магнитный железняк, или магнетит – Fe 3 O 4 , красный железняк, или гематит – Fe 2 O 3 , бурый железняк, или лимонит – 2Fe 2 O 3 · 3H 2 O, а также в состав других руд.

На внешнем энергетическом уровне у халькогенов 6 электронов. До завершения внешнего энергетического уровня атомам не хватает 2 электрона, поэтому они присоединяют электроны и проявляют в своих соединениях степень окисления -2. Кислород в соединении с фтором – OF 2 проявляет степень окисления +2. Атомы серы, селена и теллура в своих соединениях с более электроотрицательными элементами проявляют положительные степени окисления +2, +4 и +6.

Кислород – самый распространенный элемент на Земле. Он входит в состав воды, которая покрывает поверхность земного шара, образуя его водную оболочку – гидросферу. Кислород входит в состав атмосферы, где на его долю приходится 21%. Кроме этого, он ещё входит в состав многих органических соединений.

Приятного просмотра и удачи Вам в изучение данного видео урока. Вступайте в наши социальные группы В Контакте и Facebook, Google+ , Подписывайтесь на наш канал на YouTube и почтовую рассылку.

Вы также можете скачать презентации для классного часа. Презентация к 23 февраля способствует формированию у школьников общего представления об истории, армии.

Fe 2 O 3 (a-Fe 2 O 3)

Греч, «гэматос» - кровь (минерал якобы останавливает кровь) Синонимы: железный блеск, спеку-лярит, железная слюдка, красный железняк

Химический состав. Железо (Fe) 70%, кислород (О) 30%; в титаногематите присутствует примесь титана; в несущественных количествах в химический состав мо­жет входить также вода (гидрогематит).

Цвет. Грубокристаллические разности железно-черные до стально-серых, а плотные разности (красная стек­лянная голова) стально-серые до ярко-красных.

Блеск. Металлический, полуметаллический, реже туск­лый, землистый.

Прозрачность. В тонких пластинках просвечивает тем­но-красным.

Черта. Вишнево-красная, буро-красная. Твердость. 6,5.

Плотнесть. |,9-5,3.

Излом. Расслаивается на чешуйки.

Сингония. Тригопальная.

Форма кристаллов. Часто пластинчатые, ромбоэдриче­ские и таблитчатые кристаллы.

Кристаллографическая структура. Аналогична структу­ре корунда.

Класс симметрии. Дитригоналыю-скаленоэдрический.

Отношение осей, с/а =1,366.

Спайность. Отсутствует.

Агрегаты. Листоватые, зернистые, чешуйчатые, плотные, скрытокристаллйческие, натечные, .почковидные (крас-иая стеклянная голова), землистые (гидрогематит), оолитовые (икряной камень, гороховая |руда - желез­ные оолиты). П. тр. Не плавится.

Поведение в кислотах. Медленно разлагается в НС1.

Сопутствующие минералы. Кварц, пирит, магнетит, мартит, карбонаты, хлорит.

Сходные минералы. Ильменит, магнетит, хромиты, франклинит, киноварь.

Практическое значение. Гематитовые руды являются важнейшими рудами железа, мировые запасы которых исчисляются миллиардами тонн.

Происхождение. Разновидности гематита образуются в различных условиях: 1) пневматолитовым путем - че­шуйчатый железный блеск, часто встречающийся в оловорудных месторождениях; 2) как продукт вулканиче­ских возгонов в кратерах вулканов и в лавах - в виде таблитчатых выделений; 3) пневматолитово-гидротер-мальным или контактово-метасоматическим путем - в виде друз или плотных масс; 4) гидротермальным пу­тем - в виде друз; 5) при морских извержениях - в ви­де плотных сплошных масс красного железняка; 6) .региональный метаморфизм приводит к образованию гематитовых кварцитов, магнетит-гематитовых кварци­тов, гематитовых сланцев.

Месторождения. Зльбингероде, Браунезумпф и другие месторождения в Гарце, Шлейз и другие месторожде­ния в Тюрингенском Лесу, многочисленные месторож­дения Рудных гор, землистые руды, сложенные красным железняком (комплексные руды), содержащие также минералы никеля и хрома возле Хоэнштейн-Эрнстталя, Вальдгейма, Бёригена, и другие месторождения в сак­сонских Гранулитовых горах (ГДР). Всемирно извест­ные месторождения о. Эльба; гематит-магнетитовые ру­ды Кривого Рога, Курской магнитной аномалии и др. (СССР); оз. Верхнее (США, Канада); гематитовые сланцы (итабириты) в шт. Минас-Жерайс (Бразилия); крупные месторождения, расположенные в различных районах Африки, и другие месторождения различных районов мира.

Кислород О имеет атомный номер 8, расположен в главной подгруппе (подгруппе а) VI группе, во втором периоде. В атомах кислорода валентные электроны размещаются на 2-м энергетическом уровне, имеющем только s — и p -орбитали. Это исключает возможность перехода атомов О в возбуждённое состояние, поэтому кислород во всех соединениях проявляет постоянную валентность, равную II. Имея высокую электроотрицательность, атомы кислорода всегда в соединениях заряжены отрицательно (с.о. = -2 или -1). Исключение – фториды OF 2 и O 2 F 2 .

Для кислорода известны степени окисления -2, -1, +1, +2

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16 О, 17 О и 18 О (преобладает 16 О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км 3 (н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.

Открыт шведом К. Шееле (1771 – 1772 г.г) и англичанином Дж. Пристли (1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» - «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О 2 и озона О 3 .

Строение молекулы озона

3О 2 = 2О 3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О 2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O 2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O 2 голубого, твердый – синего цвета. O 2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2Н 2 О → 2Н 2 + О 2

2. В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na 2 SO 4 и др.)

2. Термическим разложением перманганата калия KMnO 4:
2KMnO 4 = K 2 MnO4 + MnO 2 + O 2 ,

Бертолетовой соли KClO 3:
2KClO 3 = 2KCl + 3O 2 (катализатор MnO 2)

Оксида марганца (+4) MnO 2:
4MnO 2 = 2Mn 2 O 3 + O 2 (700 o C),

3MnO 2 = 2Mn 3 O 4 + O 2 (1000 o C),

Пероксид бария BaO 2:
2BaO 2 = 2BaO + O 2

3. Разложением пероксида водорода:
2H 2 O 2 = H 2 O + O 2 (катализатор MnO 2)

4. Разложение нитратов:
2KNO 3 → 2KNO 2 + O 2

На космических кораблях и подводных лодках кислород получают из смеси K 2 O 2 и K 2 O 4:
2K 2 O 4 + 2H 2 O = 4KOH +3O 2
4KOH + 2CO 2 = 2K 2 CO 3 + 2H 2 O

Суммарно:
2K 2 O 4 + 2CO 2 = 2K 2 CO 3 + 3О 2

Когда используют K 2 O 2 , то суммарная реакция выглядит так:
2K 2 O 2 + 2CO 2 = 2K 2 CO 3 + O 2

Если смешать K 2 O 2 и K 2 O 4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного СО 2 выделится один моль О 2.

Химические свойства кислорода

Кислород поддерживает горение. Горение — б ыстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s 2 2p 4 находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

Кислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

Кислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O 2 → 2Li 2 O,

2K + O 2 → K 2 O 2 ,

2Ca + O 2 → 2CaO,

2Na + O 2 → Na 2 O 2 ,

2K + 2O 2 → K 2 O 4

Мелкий порошок железа (так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe 2 O 3 , а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O 2 → Fe 3 O 4

2Mg + O 2 → 2MgO

2Cu + O 2 → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O 2 → SO 2 ,

C + O 2 → CO 2 ,

2H 2 + O 2 → H 2 O,

4P + 5O 2 → 2P 2 O 5 ,

Si + O 2 → SiO 2 , и т.д

Почти все реакции с участием кислорода O 2 экзотермичны, за редким исключением, например:

N 2 + O 2 2NO – Q

Эта реакция протекает при температуре выше 1200 o C или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H 2 S + 3O 2 → 2SO 2 + 2H 2 O (избыток кислорода),

2H 2 S + O 2 → 2S + 2H 2 O (недостаток кислорода),

4NH 3 + 3O 2 → 2N 2 + 6H 2 O (без катализатора),

4NH 3 + 5O 2 → 4NO + 6H 2 O (в присутствии катализатора Pt),

CH 4 (метан) + 2O 2 → CO 2 + 2H 2 O,

4FeS 2 (пирит) + 11O 2 → 2Fe 2 O 3 + 8SO 2 .

Известны соединения, содержащие катион диоксигенила O 2 + , например, O 2 + — (успешный синтез этого соединения побудил Н. Бартлетта попытаться получить соединения инертных газов).

Озон

Озон химически более активен, чем кислород O 2 . Так, озон окисляет иодид - ионы I — в растворе Kl:

O 3 + 2Kl + H 2 O = I 2 + O 2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O 2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О 3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.

Руды. В химической формуле минерала феррум дополнен кислородом. Оксид красноват, в порошке напоминает запекшуюся кровь. Алой она становится, если растворить истолченный в воде. Создавая единую массу , частицы смотрятся .

Состав гематита бывает дополнен примесями оксидов и . Порой, в минерал входит и вода. Ее бывает до 8%. На оксид могут приходиться 14%. Доля дуэта титана с кислородом не превышает 11%.

Гематит – минерал . Под этим понятием геологи подразумевают кристаллические, тела. Они однородны, существуют обособленно, или входят в состав горных пород.

Так, гематит является примесью ко многим , окрашивая их в . Алыми оттенками железной руде обязаны, так же, некоторые , и .

Свойства гематита

Свойства минерала обусловлены его составом и строением. Обилие железа дает металлический . Редко, встречается гематит. Камень бывает не только , но и бурым, а так же, ярко-.

Цвет обусловлен концентрацией оксида железа и количеством сторонних примесей. Вода, к примеру, значительно разбавляет краски, сводя их вместо в алый спектр.

Красный гематит чаще встречается в скрытокристаллических массах. Они могут быть натечными, напоминать металлические пузыри. Такие шаровидные формы геологи именуют конкрециями.

Часть руды слоиста, а часть представлена . Последние, зачастую, и темно-. Кстати, у кристаллов гематита есть отдельное название – спекулярит.

На фото гематит в кристаллах напоминает таблички, или широкие пластины. Агрегаты камня так и называются, пластинчатыми и таблитчатыми. Встречаются и ромбоэдрические кристаллы. Но, их всего 5-10%. Под ромбоэдрическими понимают агрегаты в виде объемных ромбов. У них 6 граней.

От агрегатного состояния героя статьи зависит его прочность. В кристаллах хрупкий. От минерала легко откалываются кусочки, а при ударах образуются трещины. В скрытокристаллических массах гематит прочнее.

Его, напротив, больше у кристаллов, доходит до 6,5 баллов. В конкрециях отличается лишь 5,5-6-ю баллами. Показатели снимаются со . В ней 10 делений.

На каждом из них стоит минерал-маркер с ровно в 1 балл, 2,3, и так далее. Если на гематите оставляет царапины 6-бальный камень, а железная руда, в свою очередь, следит на 5-бальном, значит, сама тянет примерно на 5,5.

Если взять средний показатель гематита, а это 6 баллов, самоцвет можно сравнить с рубином. То есть, герой статьи годится для украшений, но рекордсменом твердости не является. До алмаза еще 4-ре балла. Значит, хранить изделия из гематита нужно бережно, избегая контакта с более твердыми и прочными камнями, металлами.

За счет присутствия железа, гематит тяжел. Плотность минерала на 2 балла выше среднего показателя самоцветов. Вместо 3-ех граммов на кубический сантиметр масса железной руды равна почти 6-ти.

Напоминая внешне , гематит лишен прозрачности. Слегка просвечивают лишь бурые и алые кристаллы. Спайности и они, и скрытокристаллические массы минерала лишены. Это значит, что у самоцвета нет определенных осей, по которым тот склонен раскалываться. Если случаются повреждения, они хаотичны.

Месторождения и добыча гематита

Гематит распространен. Это вызвано способностью камня образовываться, как на глубинах, так и на поверхности земной коры. Первый путь формирования геологи именуют эндогенным, а второй – экзогенный.

На глубинах гематит входит в состав гранитоидов, сиенитов, и . В них герой статьи появляется на поздних стадия кристаллизации пород из раскаленной магмы.

На поверхности же планеты железная руда становится частью эффузивных масс. Их еще именуют изверженными. Эффузивные породы образуются при разливе лавы по поверхности земли. Из минеральной массы высвобождаются газы. В этот-то момент и появляется спекулярит. Так называют слюдоподобную форму гематита.

Находят железную руду и в местах контактного метаморфизма, там, где на уже образовавшиеся породы воздействуют давление и температура. Так образуются железистые , и .

Найти героя статьи получается даже в осадочных массах, к примеру, оолита. Там гематит встречается в виде линз. В случае же метаморфических месторождений минерал, как правило, заполняет трещины в породах. На глубинах залегает сплошными массами.

Применение гематита

Будучи оксидом феррума, гематит служит железной рудой. Далее, стоит говорить уже о применении металла. Так, железо нужно для выплавки и . Феррум, так же, входит в некоторые с .

Растолченный гематит купить стремятся производители красок и карандашей. В обоих случаях герой статьи служит красителем, давая алые и бурые тона. Интересно, что порошком гематита выполнена часть наскальных узоров, коим, по заявлениям ученых, 30 000-35 000 лет. Получается, в качестве красящего героя статьи использовали еще на рубеже Ледникового периода.

На фото кулон со вставками гематита

Применяют железную руду и в деле. Работают, в основном, со сплошными массами минерала. Они проще обрабатываются. Отсутствие прозрачности и хрупкость гематита подразумевают огранку в виде .

Из них составляют . Можно встретить браслет из пегматита . В перстни самоцвет тоже вставляют, как и в . Порой, минерал не обрабатывают. Так, пластинчатые кристаллы руды нарастают друг на друга, уменьшаясь в размерах к центру. Получаются сростки, похожие на бутоны . Их так и вставляют в . Обычно, это гематит в серебре и недрагоценных сплавах.

Не обходится и без сувенирной продукции из оксида железа. На прилавки выставляют , подсвечники и яйца на подставках, и без них. Учитывая плотность гематита, товар тяжел. А тяжела ли окатанный камешек оценивают в 100-500 рублей, в зависимости от наличия обрамления металлом и его количества.

На фото серебряное кольцо с гематитом

Кольца из гематита предлагают за 200-400 рублей. Это ценник за сплошной перстень, без металлических дополнений. эффектны, но пользуются спросом не только благодаря эстетике. Люди тянуться еще и к магическим, лечебным свойствам минерала.

Магические и лечебные свойства гематита

Магические свойства гематита тесно связаны с лечебными. Раз камень влияет на систему кровообращения, значит, способен наделять качествами, свойственными людям, в чьих жилах кровь, как говориться, кипит.

Самоцвет пробуждает храбрость, делает мужественным. Поэтому, на вопрос, кому подходит гематит , раньше отвечали: — «Мужчинам». Однако, в современном мире границы между полами стерты. Мужественность не помешает женщинам-спасателям, пожарным, военным.

Лечебные свойства гематита не просто ускоряют кровеносные потоки, но и прочищают места закупорки сосудов. Иначе, усилить кровообращение не удалось бы. Еще Теофласт писал, что железная руда уберегает от анемии.

Греческий философ, так же, писал о влиянии гематита на репродуктивную функцию, работу почек и печени. Правда, последним органам герой статьи помогает лишь когда причина заболеваний связана с недостаточным кровообращением.

Украшения из гематита

Если с гематитом приобретаются не только ради блеска, но и магических , рекомендованы в медном обрамлении. Если надежды возлагаются на лечебные свойства , нужны модели с обилием железняка.

У минерала есть слабый магнетизм. Он оказывает общеукрепляющее действие, повышает иммунитет. Поскольку магнетизм слаб, для должного эффекта нужны бусы в несколько рядов, или несколько , надетых одновременно.