Физические свойства аллотропных модификаций серы. Аллотропные формы серы

1.1. Историческая справка

Сера – одно из немногих веществ, которое было известно с древнейших времен, её использовали первые химики. Одна из причин известности серы – распространенность самородной серы в странах древнейших цивилизаций. Её разрабатывали греки и римляне, производство серы значительно увеличилось после изобретения пороха.

1.2. Место серы в Периодической системе химических элементов Менделеева

Сера расположена в 16 группе Периодической системы химических элементов Менделеева.

На внешнем энергетическом уровне атома серы содержится 6 электронов, которые имеют электронную конфигурацию 3s 2 3p 4 . В соединениях с металлами сера проявляет отрицательную степень окисления элементов -2, в соединениях с кислородом и другими активными неметаллами – положительные +2, +4, +6. Сера – типичный неметалл, в зависимости от типа превращения может быть окислителем и восстановителем.

1.3. Распространенность в природе

Сера довольно широко распространена в природе. Её содержание в земной коре составляет 0,0048 %.Значительная часть серы встречается в самородном состоянии.

Также сера встречается в форме сульфидов: пирит, халькопирит и сульфатов: гипс, целестин и барит.

Много соединений серы содержится в нефти (тиофен C 4 H 4 S, органические сульфиды) и нефтяных газах (сероводород).

1.4. Аллотропные модификации серы

Существование аллотропных модификаций серы связано с её способностью образовывать устойчивые гомоцепи – S – S –. Устойчивость цепей объясняется тем, что связи – S – S – оказываются прочнее, чем связь в молекуле S 2 . Гомоцепи серы имеют зигзагообразную форму, поскольку в их образовании принимают участие электроны взаимно перпендикулярных р-орбиталей.

Существует три аллотропные модификации серы: ромбическая, моноклинная и пластическая. Ромбическая и моноклинная модификации построены из циклических молекул S 8 , размещенных по узлам ромбической и моноклинной решеток.

Молекула S 8 имеет форму короны, длины всех связей – S – S – равны 0,206 нм и углы близки к тетраэдрическим 108°.

В ромбической сере наименьший элементарный объем имеет форму прямоугольного параллелепипеда, а в случае моноклинной серы элементарный объем выделяется в виде скошенного параллелепипеда.

Кристалл ромбической серы Кристалл моноклинной серы

Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.

При комнатной температуре устойчива ромбическая сера. При нагревании она плавится, превращаясь в желтую легкоподвижную жидкость, при дальнейшем нагревании жидкость загустевает, так как в ней образуются длинные полимерные цепочки. При медленном охлаждении расплава образуются темно-желтые игольчатые кристаллы моноклинной серы, а если вылить расплавленную серу в холодную воду, получится пластическая сера – резиноподобная структура, состоящая из полимерных цепочек. Пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в ромбическую.

1.5. Физические свойства серы

Сера представляет собой твердое хрупкое вещество желтого цвета, в воде практически нерастворима, не смачивается водой и плавает на её поверхности. Хорошо растворяется в сероуглероде и других органических растворителях, плохо проводит тепло и электрический ток. При плавлении сера образует легкоподвижную жидкость желтого цвета, которая при 160°С темнеет, её вязкость повышается, и при 200°С сера становится темно-коричневой и вязкой, как смола. Это объясняется разрушением кольцевых молекул и образованием полимерных цепей. Дальнейшее нагревание ведет к разрыву цепей, и жидкая сера снова становится более подвижной. Пары серы имеют цвет от оранжево-желтого до соломенно-желтого цвета. Пар состоит из молекул состава S 8 , S 6 , S 4 , S 2 . При температуре выше 150 °С молекула S 2 диссоциирует на атомы.

Физические свойства аллотропных модификаций серы приведены в таблице:

Свойство

Ромбическая сера

Моноклинная сера

Пластическая сера

Светло-желтый порошок

Неметаллы.Аллотропия.

Неметаллы, химические элементы, которые образуют простые тела, не обладающие свойствами, характерными для металлов. К неметаллам относятся 22 элемента. Только два неметалла - углерод и сера - были известны в древности. В 13 в. был получен мышьяк, в 17 в. открыты водород и фосфор, в конце 18 в. - кислород, азот, хлор, теллур. В 1789 А. Л. Лавуазье включил эти неметаллы в список простых веществ (кроме хлора, который тогда считали окисленной соляной кислотой). В 1-й половине 19 в. были получены бром, иод, селен, кремний, бор. Изолировать фтор и открыть инертные газы удалось лишь в конце 19 в. Астат получен искусственно в 1940.

1. Положение неметаллов в ПС.

Неметаллы находятся в верхнем правом углу ПС над диагональю В – Аt.

Расположены в главных подгруппах 4 - 8 групп.

Физические свойства.

а) Агрегатное состояние.

  • Твердые вещества: бор, углерод, кремний, фосфор, сера, мышьяк, селен, теллур, йод, астат;
  • Жидкости: бром – красно – бурая жидкость с тяжелым неприятным запахом;
  • Газы: водород, азот, кислород, фтор, хлор и инертные газы.

Особыми являются инертные или благородные газы. Инертные газы не имеют цвета и запаха. И являются одноатомными. Инертные газы считаются благородными. Обладают более высокой электропроводностью (по сравнению с другими) и, при прохождении через них тока, ярко светятся.

  • Неон - огненно красным светом.
  • Гелий - ярко-жёлтым светом.
  • Аргон – синим светом.
  • Криптон – светло- желтым светом.
  • Ксенон – фиолетовым светом.

Несмотря на свою инертность, эти газы находят широкое применение:

Гелием заполняют воздушные шары и дирижабли.

Аргон в качестве защитной среды при сварке (дуговой, лазерной, контактной и т. п.) как металлов, так и неметаллов.

Все указанные неметаллы (водород, кислород, азот, фтор и хлор) имеют двухатомные молекулы. Водород, кислород и азот бесцветны, фтор имеет светло – зеленый цвет, хлор – желто – зеленый.

б) Не имеют металлического блеска (исключение – графит, йод)

в) Большинство не проводят электрический ток (кроме кремния и графита)

г) Хрупкие.

Аллотропия.

Явление, при котором один химический элемент образует несколько простых веществ.

Причины аллотропии:

Разный состав молекул (О2 и О3)

Разное строение (алмаз, графит)

Аллотропные видоизменения кислорода

О 3 = О 2 + О

Аллотропные видоизменения серы

Существует три аллотропные модификации серы: ромбическая, моноклинная и пластическая. Ромбическая и моноклинная модификации построены из циклических молекул S8, размещенных по узлам ромбической и моноклинной решеток. Молекула S8 имеет форму короны, длины всех связей – S – S – равны 0,206 нм и углы близки к тетраэдрическим 108°.
Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.
При комнатной температуре устойчива ромбическая сера. При нагревании она плавится, превращаясь в желтую легкоподвижную жидкость, при дальнейшем нагревании жидкость загустевает, так как в ней образуются длинные полимерные цепочки. При медленном охлаждении расплава образуются темно-желтые игольчатые кристаллы моноклинной серы, а если вылить расплавленную серу в холодную воду, получится пластическая сера – резиноподобная структура, состоящая из полимерных цепочек. Пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в ромбическую.

аллотропия берцелиус авогадро

Аллотропные модификации

Множество модификаций: алмаз, графит, фуллерен, карбин, графен, углеродные нанотрубки, лонсдейлит и др. Точное число модификаций указать затруднительно вследствие разнообразия форм связывания атомов углерода между собой. Наиболее многочисленны молекулярные структуры фуллеренов и нанотрубок.

Большое число аллотропных модификаций, второе место после углерода. Основные модификации: ромбическая, моноклинная и пластическая сера. Водород может существовать в виде орто- и пара-водорода.

Известно 11 аллотропных модификаций фосфора. Основные модификации: белый, красный и чёрный фосфор. Белый фосфор ядовит, светится в темноте, способен самовоспламеняться, красный фосфор не ядовит, не светится в темноте, сам по себе не воспламеняется.

Кислород:

Две аллотропные модификации: О2 - кислород и О3 - озон. Кислород бесцветен, не имеет запаха; озон имеет выраженный запах, имеет бледно-фиолетовый цвет, он более бактерициден.

Аллотропные модификации серы

Существование аллотропных модификаций серы связано с её способностью образовывать устойчивые гомоцепи - S - S -. Устойчивость цепей объясняется тем, что связи - S - S - оказываются прочнее, чем связь в молекуле S2. Гомоцепи серы имеют зигзагообразную форму, поскольку в их образовании принимают участие электроны взаимно перпендикулярных р-орбиталей.

Существует три аллотропные модификации серы: ромбическая, моноклинная и пластическая. Ромбическая и моноклинная модификации построены из циклических молекул S8, размещенных по узлам ромбической и моноклинной решеток.

Молекула S8 имеет форму короны, длины всех связей - S - S - равны 0, 206 нм и углы близки к тетраэдрическим 108°.

В ромбической сере наименьший элементарный объем имеет форму прямоугольного параллелепипеда, а в случае моноклинной серы элементарный объем выделяется в виде скошенного параллелепипеда.

Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении (рис.).

При комнатной температуре устойчива ромбическая сера. При нагревании она плавится, превращаясь в желтую легкоподвижную жидкость, при дальнейшем нагревании жидкость загустевает, так как в ней образуются длинные полимерные цепочки. При медленном охлаждении расплава образуются темно-желтые игольчатые кристаллы моноклинной серы, а если вылить расплавленную серу в холодную воду, получится пластическая сера - резиноподобная структура, состоящая из полимерных цепочек. Пластическая и моноклинная сера неустойчивы и самопроизвольно превращаются в ромбическую.

Положение кислорода и серы в периодической системе химических элементов, строение их атомов. Озон – аллотропная модификация кислорода

ПОДГРУППА КИСЛОРОДА (ХАЛЬКОГЕНЫ) В подгруппу кислорода входят элементы: кислород, сера, селен, теллур, полоний. ХАЛЬКОГЕНЫ В ПРИРОДЕ Положение в таблице Свойства элементов VI-A подгруппы.

Кислород и сера имеют одинаковое строение внешнего энергетического уровня –ns 2 np 4 , где n – номер периода.

Кислород O 2

(К.В. Шееле 1772 г., Дж. Пристли 1774 г.)

Самый распространенный элемент на Земле в воздухе - 21% по объему; в земной коре - 49% по массе; в гидросфере - 89% по массе; в составе живых организмов-- до 65% по массе.

АЛЛОТРОПИЯ КИСЛОРОДА

Строение атома

Химические свойства



Взаимодействие веществ с кислородом называется окислением .

С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород - окислитель.

С неметаллами

S + O 2 → SO 2

2H 2 + O 2 → 2H 2 O

С металлами

2Mg + O 2 → 2MgO

2Cu + O 2 →2CuO (при нагревании)

Со сложными веществами

4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

2H 2 S + 3O 2 → 2SO 2 + 2H 2 O

CH 4 + 2O 2 →CO 2 + 2H 2 O

Горение в кислороде

2. Действием серной кислоты на пероксид бария

3BaO 2 + 3H 2 SO 4 → 3BaSO 4 + 3H 2 O + O 3 ­

Получение и обнаружение озона

Химические свойства

Озон химически активнее кислорода. Активность озона объясняется тем, что при его разложении образуется молекула кислорода и атомарный кислород, который активно реагирует с другими веществами.

O 3 → O 2 + O (озон неустойчив)

Например, озон легко реагирует с серебром, тогда как кислород не соединяется с ним даже при нагревании:

6Ag + O 3 → 3Ag 2 O

Т. е. озон - сильный окислитель:

2KI + O 3 + H 2 O → 2KOH + I 2 + O 2

Озон в природе

Обесцвечивает красящие вещества, отражает УФ - лучи, уничтожает микроорганизмы. Озон является постоянным компонентом атмосферы Земли и играет важную роль для поддержания на ней жизни. В приземных слоях земной атмосферы концентрация озона чрезвычайно мала и составляет величину порядка 10-7 - 10-6%. Однако с увеличением высоты концентрация озона резко возрастает, проходя через максимум на высоте 20-30 км. Общее содержание озона в атмосфере может быть охарактеризовано слоем озона, приведённого к нормальным условиям (0°С, 1 атм ), и составляет толщину около 0,4-0,6 см. Общее содержание озона в атмосфере переменное, и колеблется в зависимости от времени года и географической широты. Как правило, концентрация озона больше в высоких широтах и максимальна весной, а минимальна осенью. Известно, что атмосферный озон играет ключевую роль для поддержания жизни на земле, выступая в качестве защитной составляющей для живых организмов от жёсткого ультрафиолетового излучения Солнца. С другой стороны, озон является весьма эффективным парниковым газом, и, поглощая инфракрасное излучение поверхности Земли, препятствует её охлаждению. Установлено, что нахождение и перемещение масс озона в атмосфере Земли существенно влияет на метеорологическую обстановку на планете.

Применение озона обусловлено его свойствами

1. сильного окисляющего агента:

· для стерилизации изделий медицинского назначения

· при получении многих веществ в лабораторной и промышленной практике

· для отбеливания бумаги

· для очистки масел

2. сильного дезинфицирующего средства:

· для очистки воды и воздуха от микроорганизмов (озонирование)

· для дезинфекции помещений и одежды

Одним из существенных достоинств озонирования, по сравнению с хлорированием, является отсутствие токсинов после обработки. Тогда как при хлорировании возможно образование существенного количества токсинов и ядов, например, диоксина.

Сера. Аллотропия серы. Физические и химические свойства серы. Применение

СЕРА S Cера в природе Самородная сера Украина, Поволжье, Центральная Азия и др Сульфиды PbS - свинцовый блеск Cu 2 S – медный блеск ZnS – цинковая обманка FeS 2 – пирит, серный колчедан, кошачье золото H 2 S – сероводород (в минеральных источниках и природном газе) Белки Волосы, кожные покровы, ногти… Сульфаты CaSO 4 x 2H 2 O - гипс MgSO 4 x 7H 2 O – горькая соль (английская) Na 2 SO 4 x 10H 2 O – глауберова соль (мирабилит) Физические свойства Твердое кристаллическое вещество желтого цвета, нерастворима в воде, водой не смачивается (плавает на поверхности), t° кип = 445°С Аллотропия Для серы характерны несколько аллотропных модификаций:

Взаимопревращение аллотропных модификаций серы

Строение атома серы

Размещение электронов по уровням и подуровням

Получение серы

1. Промышленный метод - выплавление из руды с помощью водяного пара.

2. Неполное окисление сероводорода (при недостатке кислорода).

2H 2 S + O 2 = 2S + 2H 2 O

3. Реакция Вакенродера

2H 2 S + SO 2 = 3S + 2H 2 O

Химические свойства серы

Cера в природе

Самородная сера

Украина, Поволжье, Центральная Азия и др

Сульфиды

PbS - свинцовый блеск

Cu 2 S – медный блеск

ZnS – цинковая обманка

FeS 2 – пирит, серный колчедан, кошачье золото

H 2 S – сероводород (в минеральных источниках и природном газе)

Белки

Волосы, кожные покровы, ногти…

Сульфаты

CaSO 4 x 2 H 2 O - гипс

MgSO 4 x 7 H 2 O – горькая соль (английская)

Na 2 SO 4 x 10 H 2 O – глауберова соль (мирабилит)

Физические свойства

Твердое кристаллическое вещество желтого цвета , нерастворима в воде, водой не смачивается (плавает на поверхности), t ° кип = 445°С

Аллотропия

Для серы характерны несколько аллотропных модификаций:

Ромбическая

(a - сера) - S 8

t ° пл. = 113° C ;

ρ = 2,07 г/см 3 .

Наиболее устойчивая модификация.

Моноклинная

(b - сера) - S 8

темно-желтые иглы,

t ° пл. = 119° C ; ρ = 1,96 г/см3. Устойчивая при температуре более96°С; при обычных условиях превращается в ромбическую.

Пластическая

S n

коричневая резиноподобная (аморфная) масса.Неустойчива, при затвердевании превращается в ромбическую.

c остальными металлами (кроме Au , Pt ) - при повышенной t ° :

2Al + 3S – t ° -> Al 2 S 3

Zn + S – t °-> ZnS ОПЫТ

Cu + S – t °-> CuS ОПЫТ

2) С некоторыми неметаллами сера образует бинарные соединения:

H 2 + S -> H 2 S

2P + 3S -> P 2 S 3

C + 2S -> CS 2

1) c кислородом:

S + O 2 – t ° -> S +4 O 2

2S + 3O 2 – t ° ; pt -> 2S +6 O 3

2) c галогенами (кроме йода):

S + Cl 2 -> S +2 Cl 2

3) c кислотами - окислителями:

S + 2H 2 SO 4 (конц) -> 3S +4 O 2 + 2H 2 O

S + 6HNO 3 (конц) -> H 2 S +6 O 4 + 6NO 2 + 2H 2 O

Применение

Вулканизация каучука, получение эбонита, производство спичек, пороха, в борьбе с вредителями сельского хозяйства, для медицинских целей (серные мази для лечения кожных заболеваний), для получения серной кислоты и т.д.

Применение серы и её соединений

ЗАДАНИЯ

№1. Закончите уравнения реакций:
S + O 2
S + Na
S + H 2
Расставьте коэффициенты методом электронного баланса, укажите окислитель, восстановитель.

№2. Осуществите превращения по схеме:
H 2 S → S → Al 2 S 3 → Al(OH) 3

№3. Закончите уравнения реакций, укажите, какие свойства проявляет сера (окислителя или восстановителя):

Al + S =(при нагревании)

S + H 2 = (150-200)

S + O 2 = (при нагревании)

S + F 2 = (при обычных условиях)

S + H 2 SO 4 (к) =

S + KOH =

S + HNO 3 =

Это интересно...

Содержание серы в организме человека массой 70 кг - 140 г.

В сутки человеку необходимо 1 г серы.

Серой богаты горох, фасоль, овсяные хлопья, пшеница, мясо, рыба, плоды и сок манго.

Сера входит в состав гормонов, витаминов, белков, она есть в хрящевой ткани, в волосах, ногтях. При недостатке серы в организме наблюдается хрупкость ногтей и костей, выпадение волос.

Следите за своим здоровьем!

Знаете ли вы...

·Соединения серы могут служить лекарственными препаратами

·Сера – основа мази для лечения грибковых заболеваний кожи, для борьбы с чесоткой. Тиосульфат натрия Na 2 S 2 O 3 используется для борьбы с нею

·Многие соли серной кислоты содержат кристаллизационную воду: ZnSO 4 ×7H 2 O и CuSO 4 ×5H 2 O. Их применяют как антисептические средства для опрыскивания растений и протравливания зерна в борьбе с вредителями сельского хозяйства

·Железный купорос FeSO 4 ×7H 2 O используют при анемии

·BaSO 4 применяют при рентгенографическом исследовании желудка и кишечника

·Алюмокалиевые квасцы KAI(SO 4) 2 ×12H 2 O - кровоостанавливающее средство при порезах

·Минерал Na 2 SO 4 ×10H 2 O носит название «глауберова соль» в честь открывшего его в VIII веке немецкого химика Глаубера И.Р. Глаубер во время своего путешествия внезапно заболел. Он ничего не мог есть, желудок отказывался принимать пищу. Один из местных жителей направил его к источнику. Как только он выпил горькую соленую воду, сразу стал есть. Глаубер исследовал эту воду, из нее выкристаллизовалась соль Na 2 SO 4 ×10H 2 O. Сейчас ее применяют как слабительное в медицине, при окраске хлопчато- бумажных тканей. Соль также находит применение в производстве стекла

·Тысячелистник обладает повышенной способностью извлекать из почвы серу и стимулировать поглощение этого элемента с соседними растениями

·Чеснок выделяет вещество – альбуцид, едкое соединение серы. Это вещество предотвращает раковые заболевания, замедляет старение, предупреждает сердечные заболевания.