Нормальное распределение. Непрерывные распределения в EXCEL

(вещественный, строго положительный)

Норма́льное распределе́ние , также называемое распределением Гаусса или Гаусса - Лапласа - распределение вероятностей , которое в одномерном случае задаётся функцией плотности вероятности , совпадающей с функцией Гаусса :

f (x) = 1 σ 2 π e − (x − μ) 2 2 σ 2 , {\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}\;e^{-{\frac {(x-\mu)^{2}}{2\sigma ^{2}}}},}

где параметр μ - математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ - среднеквадратическое отклонение ( σ  ² - дисперсия) распределения.

Таким образом, одномерное нормальное распределение является двухпараметрическим семейством распределений. Многомерный случай описан в статье «Многомерное нормальное распределение ».

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием μ = 0 и стандартным отклонением σ = 1 .

Энциклопедичный YouTube

  • 1 / 5

    Важное значение нормального распределения во многих областях науки (например, в математической статистике и статистической физике) вытекает из центральной предельной теоремы теории вероятностей . Если результат наблюдения является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то при увеличении числа слагаемых распределение центрированного и нормированного результата стремится к нормальному. Этот закон теории вероятностей имеет следствием широкое распространение нормального распределения, что и стало одной из причин его наименования.

    Свойства

    Моменты

    Если случайные величины X 1 {\displaystyle X_{1}} и X 2 {\displaystyle X_{2}} независимы и имеют нормальное распределение с математическими ожиданиями μ 1 {\displaystyle \mu _{1}} и μ 2 {\displaystyle \mu _{2}} и дисперсиями σ 1 2 {\displaystyle \sigma _{1}^{2}} и σ 2 2 {\displaystyle \sigma _{2}^{2}} соответственно, то X 1 + X 2 {\displaystyle X_{1}+X_{2}} также имеет нормальное распределение с математическим ожиданием μ 1 + μ 2 {\displaystyle \mu _{1}+\mu _{2}} и дисперсией σ 1 2 + σ 2 2 . {\displaystyle \sigma _{1}^{2}+\sigma _{2}^{2}.} Отсюда вытекает, что нормальная случайная величина представима как сумма произвольного числа независимых нормальных случайных величин.

    Максимальная энтропия

    Нормальное распределение имеет максимальную дифференциальную энтропию среди всех непрерывных распределений, дисперсия которых не превышает заданную величину .

    Моделирование нормальных псевдослучайных величин

    Простейшие приближённые методы моделирования основываются на центральной предельной теореме . Именно, если сложить несколько независимых одинаково распределённых величин с конечной дисперсией , то сумма будет распределена приблизительно нормально. Например, если сложить 100 независимых стандартно равномерно  распределённых случайных величин, то распределение суммы будет приближённо нормальным .

    Для программного генерирования нормально распределённых псевдослучайных величин предпочтительнее использовать преобразование Бокса - Мюллера . Оно позволяет генерировать одну нормально распределённую величину на базе одной равномерно распределённой.

    Нормальное распределение в природе и приложениях

    Нормальное распределение часто встречается в природе. Например, следующие случайные величины хорошо моделируются нормальным распределением:

    • отклонение при стрельбе.
    • погрешности измерений (однако погрешности некоторых измерительных приборов имеют не нормальные распределения).
    • некоторые характеристики живых организмов в популяции.

    Такое широкое распространение этого распределения связано с тем, что оно является бесконечно делимым непрерывным распределением с конечной дисперсией. Поэтому к нему в пределе приближаются некоторые другие, например, биномиальное и пуассоновское . Этим распределением моделируются многие не детерминированные физические процессы.

    Связь с другими распределениями

    • Нормальное распределение является распределением Пирсона типа XI .
    • Отношение пары независимых стандартных нормально распределенных случайных величин имеет распределение Коши . То есть, если случайная величина X {\displaystyle X} представляет собой отношение X = Y / Z {\displaystyle X=Y/Z} (где Y {\displaystyle Y} и Z {\displaystyle Z} - независимые стандартные нормальные случайные величины), то она будет обладать распределением Коши.
    • Если z 1 , … , z k {\displaystyle z_{1},\ldots ,z_{k}} - совместно независимые стандартные нормальные случайные величины, то есть z i ∼ N (0 , 1) {\displaystyle z_{i}\sim N\left(0,1\right)} , то случайная величина x = z 1 2 + … + z k 2 {\displaystyle x=z_{1}^{2}+\ldots +z_{k}^{2}} имеет распределение хи-квадрат с k степенями свободы.
    • Если случайная величина X {\displaystyle X} подчинена логнормальному распределению , то её натуральный логарифм имеет нормальное распределение. То есть, если X ∼ L o g N (μ , σ 2) {\displaystyle X\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} , то Y = ln ⁡ (X) ∼ N (μ , σ 2) {\displaystyle Y=\ln \left(X\right)\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} . И наоборот, если Y ∼ N (μ , σ 2) {\displaystyle Y\sim \mathrm {N} \left(\mu ,\sigma ^{2}\right)} , то X = exp ⁡ (Y) ∼ L o g N (μ , σ 2) {\displaystyle X=\exp \left(Y\right)\sim \mathrm {LogN} \left(\mu ,\sigma ^{2}\right)} .
    • Отношение квадратов двух стандартных нормальных случайных величин имеет имеет

    Нормальное распределение - наиболее часто встречающийся вид распределения. С ним приходится встречаться при анализе погрешностей измерений, контроле технологических процессов и режимов, а также при анализе и прогнозировании различных явлений в биологии , медицине и других областях знаний.

    Термин «нормальное распределение» применяется в условном смысле как общепринятый в литературе, хотя и не совсем удачный. Так, утверждение, что какой-то признак подчиняется нормальному закону распределения, вовсе не означает наличие каких-либо незыблемых норм, якобы лежащих в основе явления, отражением которого является рассматриваемый признак, а подчинение другим законам распределения не означает какую-то анормальность данного явления.

    Главная особенность нормального распределения состоит в том, что оно является предельным, к которому приближаются другие распределения. Нормальное распределение впервые открыто Муавром в 1733 году. Нормальному закону подчиняются только непрерывные случайные величины. Плотность нормального закона распределения имеет вид .

    Математическое ожидание для нормального закона распределения равно . Дисперсия равна .

    Основные свойства нормального распределения.

    1. Функция плотности распределения определена на всей числовой оси Ох , то есть каждому значению х соответствует вполне определённое значение функции.

    2. При всех значениях х (как положительных, так и отрицательных) функция плотности принимает положительные значения, то есть нормальная кривая расположена над осью Ох .

    3. Предел функции плотности при неограниченном возрастании х равен нулю, .

    4. Функция плотности нормального распределения в точке имеет максимум .

    5. График функции плотности симметричен относительно прямой .

    6. Кривая распределения имеет две точки перегиба с координатами и .

    7. Мода и медиана нормального распределения совпадают с математическим ожиданием а .

    8. Форма нормальной кривой не изменяется при изменении параметра а .

    9. Коэффициенты асимметрии и эксцесса нормального распределения равны нулю.

    Очевидна важность вычисления этих коэффициентов для эмпирических рядов распределения, так как они характеризуют скошеннность и крутость данного ряда по сравнению с нормальным.

    Вероятность попадания в интервал находится по формуле , где нечётная табулированная функция.

    Определим вероятность того, что нормально распределённая случайная величина отклоняется от своего математического ожидания на величину, меньшую , то есть найдём вероятность осуществления неравенства , или вероятность двойного неравенства . Подставляя в формулу, получим

    Выразив отклонение случайной величины Х в долях среднего квадратического отклонения, то есть положив в последнем равенстве, получим .


    Тогда при получим ,

    при получим ,

    при получим .

    Из последнего неравенства следует, что практически рассеяние нормально распределённой случайной величины заключено на участке . Вероятность того, что случайная величина не попадёт на этот участок, очень мала, а именно равна 0,0027, то есть это событие может произойти лишь в трёх случаях из 1000. Такие события можно считать практически невозможными. На приведённых рассуждениях основано правило трёх сигм , которое формулируется следующим образом: если случайная величина имеет нормальное распределение, то отклонение этой величины от математического ожидания по абсолютной величине не превосходит утроенного среднего квадратического отклонения .

    Пример 28 . Деталь, изготовленная автоматом, считается годной, если отклонение её контролируемого размера от проектного не превышает 10 мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону распределения со средним квадратическим отклонением мм и математическим ожиданием . Сколько процентов годных деталей изготавливает автомат?

    Решение. Рассмотрим случайную величину Х - отклонение размера от проектного. Деталь будет признана годной, если случайная величина принадлежит интервалу . Вероятность изготовления годной детали найдём по формуле . Следовательно, процент годных деталей, изготавливаемых автоматом, равен 95,44%.

    Биномиальное распределение

    Биномиальным является распределение вероятностей появления m числа событий в п независимых испытаниях, в каждом из которых вероятность появления события постоянна и равна р . Вероятность возможного числа появлений события вычисляется по формуле Бернулли: ,

    где . Постоянные п и р , входящие в это выражение, параметры биномиального закона. Биномиальным распределением описывается распределение вероятностей дискретной случайной величины.

    Основные числовые характеристики биномиального распределения. Математическое ожидание равно . Дисперсия равна . Коэффициенты асимметрии и эксцесса равны и . При неограниченном возрастании числа испытаний А и Е стремятся к нулю, следовательно, можно предположить, что биномиальное распределение сходится к нормальному с возрастанием числа испытаний.

    Пример 29 . Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А в одном испытании, если дисперсия числа появлений в трёх испытаниях равна 0,63.

    Решение. Для биномиального распределения . Подставим значения, получим отсюда или тогда и .

    Распределение Пуассона

    Закон распределения редких явлений

    Распределение Пуассона описывает число событий m , происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью. При этом число испытаний п велико, а вероятность появления события в каждом испытании р мала. Поэтому распределение Пуассона называют законом редких явлений или простейшим потоком. Параметром распределения Пуассона является величина , характеризующая интенсивность появления событий в п испытаниях. Формула распределения Пуассона .

    Пуассоновским распределением хорошо описываются число требований на выплату страховых сумм за год, число вызовов, поступивших на телефонную станцию за определённое время, число отказов элементов при испытании на надёжность, число бракованных изделий и так далее.

    Основные числовые характеристики для распределения Пуассона. Математическое ожидание равно дисперсии и равно а . То есть . Это является отличительной особенностью этого распределения. Коэффициенты асимметрии и эксцесса соответственно равны .

    Пример 30 . Среднее число выплат страховых сумм в день равно двум. Найти вероятность того, что за пять дней придётся выплатить: 1) 6 страховых сумм; 2) менее шести сумм; 3) не менее шести. или экспоненциальное распределение.

    Это распределение часто наблюдается при изучении сроков службы различных устройств, времени безотказной работы отдельных элементов, частей системы и системы в целом, при рассмотрении случайных промежутков времени между появлениями двух последовательных редких событий.

    Плотность показательного распределения определяется параметром , который называют интенсивностью отказов . Этот термин связан с конкретной областью приложения - теорией надёжности.

    Выражение интегральной функции показательного распределения можно найти, используя свойства дифференциальной функции:

    Математическое ожидание показательного распределения , дисперсия , среднее квадратическое отклонение . Таким образом, для этого распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию. При любом значении параметра коэффициенты асимметрии и эксцесса - постоянные величины .

    Пример 31 . Среднее время работы телевизора до первого отказа равно 500 часов. Найти вероятность того, что наудачу взятый телевизор проработает без поломок более 1000 часов.

    Решение. Так как среднее время работы до первого отказа равно 500, то . Искомую вероятность найдём по формуле .

    Наиболее известным и часто применяемым в теории вероятностей законом является нормальный закон распределения или закон Гаусса .

    Главная особенность нормального закона распределения заключается в том, что он является предельным законом для других законов распределения.

    Заметим, что для нормального распределения интегральная функция имеет вид:

    .

    Покажем теперь, что вероятностный смысл параметров и таков: а есть математическое ожидание, - среднее квадратическое отклонение (то есть ) нормального распределения:

    а) по определению математического ожидания непрерывной случайной величины имеем

    Действительно

    ,

    так как под знаком интеграла стоит нечётная функция, и пределы интегрирования симметричны относительно начала координат;

    - интеграл Пуассона .

    Итак, математическое ожидание нормального распределения равно параметру а .

    б) по определению дисперсии непрерывной случайной величины и, учитывая, что , можем записать

    .

    Интегрируя по частям, положив , найдём

    Следовательно .

    Итак, среднее квадратическое отклонение нормального распределения равно параметру .

    В случае если и нормальное распределение называют нормированным (или, стандартным нормальным) распределением. Тогда, очевидно, нормированная плотность (дифференциальная) и нормированная интегральная функция распределения запишутся соответственно в виде:

    (Функция , как вам известно, называется функцией Лапласа (см. ЛЕКЦИЮ5) или интегралом вероятностей. Обе функции, то есть , табулированы и их значения записаны в соответствующих таблицах).

    Свойства нормального распределения (свойства нормальной кривой):

    1. Очевидно, функция на всей числовой прямой.

    2. , то есть нормальная кривая расположена над осью Ох .

    3. , то есть ось Ох служит горизонтальной асимптотой графика.

    4. Нормальная кривая симметрично относительно прямой х = а (соответственно график функции симметричен относительно оси Оу ).

    Следовательно, можем записать : .

    5. .

    6. Легко показать, что точки и являются точками перегиба нормальной кривой (доказать самостоятельно).

    7. Очевидно, что

    но, так как , то . Кроме того , следовательно, все нечётные моменты равны нулю.

    Для чётных же моментов можем записать:

    8. .

    9. .

    10. , где .

    11. При отрицательных значениях случайной величины: , где .


    13. Вероятность попадания случайной величины на участок, симметричный относительно центра распределения, равна:

    ПРИМЕР 3 . Показать, что нормально распределённая случайная величина Х отклоняется от математического ожидания М (Х ) не более чем на .

    Решение . Для нормального распределения: .

    Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0, 0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий, можно считать практически невозможными.

    Итак, событие с вероятностью 0,9973 можно считать практически достоверным, то есть случайная величина отклоняется от математического ожидания не более чем на .

    ПРИМЕР 4 . Зная характеристики нормального распределения случайной величины Х - предела прочности стали: кг/мм 2 и кг/мм 2 , найти вероятность получения стали с пределом прочности от 31 кг/мм 2 до 35 кг/мм 2 .

    Решение .

    3. Показательное распределение (экспоненциальный закон распределения)

    Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х , которое описывается дифференциальной функцией (плотность распределения)

    где - постоянная положительная величина.

    Показательное распределение определяется одним параметром . Эта особенность показательного распределения указывает на его преимущество, по сравнению с распределениями, зависящими от большего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближённые значения); разумеется, проще оценить один параметр, чем два, или три и т.д.

    Нетрудно записать интегральную функцию показательного распределения:

    Мы определили показательное распределение при помощи дифференциальной функции; ясно, что его можно определить, пользуясь интегральной функцией.

    Замечание : Рассмотрим непрерывную случайную величину Т - длительность времени безотказной работы изделия. Обозначим принимаемые её значения через t , . Интегральная функция распределения определяет вероятность отказа изделия за время длительностью t . Следовательно, вероятность безотказной работы за это же время, длительностью t , то есть вероятность противоположного события , равна

    ) играет осо-бо важную роль в теории вероятностей и чаще других применяется в решении практических задач. Его главная особенность в том, что он является предельным законом, к которому приближаются дру-гие законы распределения при весьма часто встречающихся типич-ных условиях. Например, сумма достаточно большого числа неза-висимых (или слабо зависимых) случайных величин приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем больше случайных величин суммируется.

    Экспериментально доказано, что нормальному закону под-чиняются погрешности измерений, отклонения геометрических размеров и положения элементов строительных конструкций при их изготовлении и монтаже, изменчивость физико-механических характеристик материалов и нагру-зок, действующих на строительные конструкции.

    Распределению Гаусса подчи-няются почти все случайные вели-чины, отклонение которых от сред-них значений вызывается большой совокупностью случайных факто-ров, каждый из которых в отдельности незначителен (центральная предельная теорема).

    Нормальным распределением называется распределение случайной непрерывной величины, для которых плотность вероят-ностей имеет вид (рис. 18.1).

    Рис. 18.1. Нормальный закон распределения при а 1 < a 2 .

    (18.1)

    где а и — параметры распределения.

    Вероятностные характеристики случайной величины, распре-деленной по нормальному закону, равны:

    Математическое ожидание (18.2)

    Дисперсия (18.3)

    Среднеквадратичное отклонение (18.4)

    Коэффициент асимметрии А = 0 (18.5)

    Эксцесс Е = 0. (18.6)

    Параметр σ, входящий в распределение Гаусса равен сред-неквадратичному отношению слу-чайной величины. Величина а оп-ределяет положение центра рас-пределения (см. рис. 18.1), а величина а — ширину распределе-ния (рис. 18.2), т.е. статистический разброс вокруг средней величины.

    Рис. 18.2. Нормальный закон распределения при σ 1 < σ 2 < σ 3

    Вероятность попадания в заданный интервал (от x 1 до x 2) для нормального распределения, как и во всех случаях, определяется интегралом от плотности вероятности (18.1), который не выража-ется через элементарные функции и представляется специальной функцией, называется функцией Лапласа (интеграл вероятностей).

    Одно из представлений интеграла вероятностей:

    (18.7)

    Величина и называется квантилем.

    Видно, что Ф(х) — нечетная функция, т. е. Ф(-х) = -Ф(х). Значения этой функции вычислены и представлены в виде таблиц в технической и учебной литературе.


    Функция распределения нормального закона (рис. 18.3) может быть выражена через ин-теграл вероятностей:

    (18.9)

    Рис. 18.2. Функция нормального закона распределения.

    Вероятность попадания случайной величины, распределенной по нормальному закону, в интервал от х. до х, определяется выра-жением:

    Следует заметить, что

    Ф(0) = 0; Ф(∞) = 0,5; Ф(-∞) = -0,5.

    При решении практических задач, связанных с распределе-нием, часто приходится рассматривать вероятность попадания в интервал, симметричный относительно математического ожидания, если длина этого интервала т.е. если сам интервал имеет грани-цу от до , имеем:

    При решении практических задач границы отклонений слу-чайных величин выражаются через стандарт, среднеквадратичное отклонение, умноженное на некоторый множитель, определяющий границы области отклонений случайной величины.

    Принимая и а также используя формулу (18.10) и таблицу Ф(х) (приложение № 1), получим

    Эти формулы показывают , что если случайная величина име-ет нормальное распределение, то вероятность ее отклонения от сво-его среднего значения не более чем на σ составляет 68,27 %, не бо-лее чем на 2σ — 95,45 % и не более чем на Зσ — 99,73 %.

    Поскольку величина 0,9973 близка к единице, практически считается невозможным отклонение нормального распределения случайной величины от математического ожидания более чем на Зσ. Это правило, справедливое только для нормального распределения, называется правилом трех сигм. Нарушение его имеет вероятность Р = 1 - 0,9973 = 0,0027. Этим правилом пользуются при установле-нии границ допустимых отклонений допусков геометрических ха-рактеристик изделий и конструкций.

    Закон нормального распределения, так называемый закон Гаусса - один из самых распространенных законов. Это фундаментальный закон в теории вероятностей и в ее применении. Нормальное распределение чаще всего встречается в изучении природных и социально-экономических явлений. Иначе говоря, большинство статистических совокупностей в природе и обществе подчиняется закону нормального распределения. Соответственно можно сказать, что совокупности большого числа крупных по объему выборок подчиняются закону нормального распределения. Те из совокупностей, которые отклоняются от нормального распределения в результате специальных преобразований, могут быть приближены к нормальному. В связи с этим следует помнить, что принципиальная особенность этого закона применительно к другим законам распределения заключается в том, что он является законом границы, к которой приближаются другие законы распределения в определенных (типовых) условиях.

    Следует отметить, что термин "нормальное распределение" имеет условный смысл, как общепринятый в математической и статистико-математической литературе термин. Утверждение, что тот или иной признак любого явления подчиняется закону нормального распределения, вовсе не означает незыблемость норм, будто присущих исследуемому явлению, а отнесения последнего ко второму виду закона не означает какую-то анормальнисть данного явления. В этом смысле термин "нормальное распределение" не совсем удачен.

    Нормальное распределение (закон Гаусса-Лапласа) является типом непрерывного распределения. Где Муавр (одна тысяча семьсот семьдесят три, Франция) вывел нормальный закон распределения вероятностей. Основные идеи этого открытия были использованы в теории ошибок впервые К. Гауссом (1809, Германия) и А.Лапласом (1812, Франция), которые внесли витчутний теоретический вклад в разработку самого закона. В частности, К. Гаусс в своих разработках исходил из признания наиболее вероятным значением случайной величины-среднюю арифметическую. Общие условия возникновения нормального распределения установил А.М.Ляпунова. Им было доказано, что если исследуемая признак представляет собой результат суммарного воздействия многих факторов, каждый из которых мало связан с большинством остальных, и влияние каждого фактора на конечный результат гораздо перекрывается суммарным воздействием всех остальных факторов, то распределение становится близким к нормальному.

    Нормальным называют распределение вероятностей непрерывной случайной величины, имеет плотность:

    1 +1 (& #) 2

    / (х, х, <т) = - ^ е 2 ст2

    где х - математическое ожидание или средняя величина. Как видно, нормальное распределение определяется двумя параметрами: х и °. Чтобы задать нормальное распределение, достаточно знать математическое ожидание или среднее и среднее квадратическое отклонение. Эти две величины определяют центр группировки и форму

    кривой на графике. График функции и (хх, в) называется нормальной кривой (кривая Гаусса) с параметрами х и в (рис. 12).

    Кривая нормального распределения имеет точки перегиба при X ± 1. Если представить графически, то между X = + l и 1 = -1 находится 0,683 части всей площади кривой (т.е. 68,3%). В границах X = + 2 и X- 2. находятся 0,954 площади (95,4%), а между X = + 3 и X = - 3 - 0,997 части всей площади распределения (99,7%). На рис. 13 проиллюстрирован характер нормального распределения с одно-, двух- и трисигмовою границами.

    При нормальном распределении средняя арифметическая, мода и медиана будут равны между собой. Форма нормальной кривой имеет вид одновершинные симметричной кривой, ветки которой асимптотически приближаются к оси абсцисс. Наибольшая ордината кривой соответствует х = 0. В этой точке на оси абсцисс размещается численное значение признаков, равное средней арифметической, моде и медиане. По обе стороны от вершины кривой ее ветки приходят, изменяя в определенных точках форму выпуклости на вогнутость. Эти точки симметричные и соответствуют значениям х = ± 1, то есть величинам признаки, отклонения которых от средней численно равна среднему квадратичному отклонению. Ордината, что соответствует средней арифметической, делит всю площадь между кривой и осью абсцисс пополам. Итак, вероятности появления значений исследуемого признака больших и меньших средней

    арифметической будут равны 0,50, то есть х, (~ ^ х) = 0,50 В

    Рис.12. Кривая нормального распределения (кривая Гаусса)

    Форму и положение нормальной кривой обусловливают значение средней и среднего квадратичного отклонения. Математически доказано, что изменение величины среднего (математического ожидания) не изменяет формы нормальной кривой, а приводит лишь к ее смещение вдоль оси абсцисс. Кривая сдвигается вправо, если ~ растет, и влево, если ~ приходит.

    Рис.14. Кривые нормального распределения с различными значениями параметра в

    Об изменении формы графика нормальной кривой при изменении

    среднего квадратичного отклонения можно судить по максимуму

    дифференциальной функции нормального распределения, равный 1

    Как видно, при росте величины ° максимальная ордината кривой будет уменьшаться. Следовательно, кривая нормального распределения будет сжиматься к оси абсцисс и принимать более плосковершинных форму.

    И, наоборот, при уменьшении параметра в нормальная кривая вытягивается в положительном направлении оси ординат, а форма "колокола" становится более гостровершиною (рис. 14). Отметим, что независимо от величины параметров ~ и в площадь, ограниченная осью абсцисс и кривой, всегда равен единице (свойство плотности распределения). Это наглядно иллюстрирует график (рис. 13).

    Названные выше особенности проявления "нормальности" распределения позволяют выделить ряд общих свойств, которые имеют кривые нормального распределения:

    1) любой нормальный кривая достигает точки максимума = х) приходит непрерывно вправо и влево от него, постепенно приближаясь к оси абсцисс;

    2) любой нормальный кривая симметрична по отношению к прямой,

    параллельной оси ординат и проходит через точку максимума = х)

    максимальная ордината равна ^^^ я;

    3) любой нормальный кривая имеет форму "колокола", имеет выпуклость, которая направлена вверх к точке максимума. В точках х ~ ° и х + в она меняет выпуклость, и, чем меньше а, тем острее "колокол", а чем больше а, тем более похилишою становится вершина "колокола" (рис.14). Изменение математического ожидания (при неизменной величине

    в) не приводит к модификации формы кривой.

    При х = 0 и ° = 1 нормальную кривую называют нормированной кривой или нормальным распределением в каноническом виде.

    Нормированная кривая описывается следующей формуле:

    Построение нормальной кривой по эмпирическим данным производится по формуле:

    пи 1 - "" = --- 7 = е

    где и ™ - теоретическая частота каждого интервала (группы) распределения; "- Сумма частот, равную объему совокупности; "- шаг интервала;

    же - отношение длины окружности к ее диаметру, которое составляет

    е - основание натуральных логарифмов, равна 2,71828;

    Вторая и третья части формулы) является функцией

    нормированного отклонения ЦЧ), которую можно рассчитать для любых значений X. Таблицы значений ЦЧ) обычно называют "таблицы ординат нормальной кривой" (приложение 3). При использовании этих функций рабочая формула нормального распределения приобретает простого вида:

    Пример. Рассмотрим случай построения нормальной кривой на примере данных о распределении 57 работников по уровню дневного заработка (табл. 42). По данным таблицы 42, находим среднюю арифметическую:

    ~ = ^ = И6 54 =

    Рассчитываем среднее квадратическое отклонение:

    Для каждой строки таблицы находим значение нормированного отклонения

    х и ~ х | 12 г => - = - ^ 2 = 1.92

    а 6.25 (дд Я первого интервала и т.д.).

    В графе 8 табл. 42 записываем табличное значение функции Ди) из приложения, например, для первого интервала X = 1.92 находим "1,9" против "2" (0.0632).

    Для вычисления теоретических частот, то есть ординат кривой нормального распределения, вычисляется множитель:

    * = ^ = 36,5 а 6,25

    Все найденные табличные значения функции / (г) умножаем на 36,5. Так, для первого интервала получаем 0,0632x36,5 = 2,31 т. Принято немногочисленные

    частоты (п "<5) объединять (в нашем примере - первые два и последние два интервала).

    Если крайние теоретические частоты значительно отличаются от нуля, расхождение между суммами эмпирических и теоретических частот может оказаться значительной.

    График распределения эмпирических и теоретических частот (нормальная кривая) по данным рассматриваемого примера показано на рисунке 15.

    Рассмотрим пример определения частот нормального распределения для случая, когда в крайних интервалах отсутствует частота (табл. 43). Здесь эмпирическая

    X - нормированное отклонение, (в) а - среднее квадратическое отклонение.

    частота первого интервала равна нулю. Полученная сумма неуточненных частот не равна сумме их эмпирических значений (56 * 57). В этом случае рассчитывается теоретическая частота для умывания полученных значений центра интервала, нормированного отклонения и его функции.

    В таблице 43 эти величины обведено прямоугольником. При построении графика нормальной кривой в таких случаях теоретическую кривую продолжают. В рассматриваемом случае нормальная кривая будет продолжена в сторону отрицательных отклонений от средней, поскольку первая не уточнена частота равна 5. Рассчитана теоретическая частота (уточненная) для первого интервала будет равен единице. По сумме уточнены частоты совпадают с эмпирическими

    Таблица 42

    Расчетные величины

    Статистические параметры

    Интервал,

    Количество единиц,

    х) 2

    нормированное отделения,

    теоретическая

    частота нормального ряда распределения,

    / 0) х - а

    >>

    Тысяча шестьсот пятьдесят четыре

    а = 6,25

    ^ i = 36,5 а

    Таблица 43

    Расчет частот нормального распределения (выравнивание эмпирических частот по нормальному закону)

    Количество единиц,

    Расчетные величины

    Статистические параметры

    Интервал (и-2)

    Срединное значение (центр) интервала,

    (je, -xf

    ^ x t -x) 1 n и

    нормированное отклонение

    x s - х

    t = x --L

    табличное значение функции, f (t)

    теоретическая

    частота нормального ряда распределения

    уточненное значение теоретической частоты,

    ш

    -

    -

    -

    -

    -

    о = 2,41

    Рис. 15. Эмпирический распределение (1) и нормальная кривая (2)

    Кривую нормального распределения по исследуемой совокупности можно построить и другим способом (в отличие, от рассмотренного выше). Так, если необходимо иметь приближенную представление о соответствии фактического распределения нормальному, вычисления осуществляют следующим последовательности. Определяют максимальную ординату, которая соответствует среднему размеру признаки), затем, вычислив среднее квадратическое отклонение, рассчитывают координаты точек кривой нормального распределения по схеме, изложенной в таблицах 42 и 43. Так, по исходным и расчетным данным таблицы 43 должны среднюю ~ = 26 Эта величина средней совпадает с центром четвертого интервала (25-27). Итак, частота этого интервала "20" может быть принята (при построении графика) максимальной ординату). Имея исчисленную дисперсию (в = 2,41 см. Табл. 43), рассчитываем значения координат всех необходимых точек кривой нормального распределения (табл. 44, 45). По полученным координатам чертим нормальную кривую (рис. 16), приняв максимальной ординату частоту четвертого интервала.

    Согласованность эмпирического распределения с нормальным может быть установлена также путем упрощенных расчетов. Так, если отношение показателя степени асимметрии (^) к своей середнеквадраты-ческой ошибки ш а "или отношение показателя эксцесса (Е х) к своей среднеквадратического ошибки т & превышает по абсолютной величине число« 3 », делается вывод о несоответствии эмпирического распределения характера нормального распределения (то есть,

    А ц Е х

    если А> 3 или ш е "> 3).

    Есть и другие, нетрудоемкие приемы установления "нормальности" распределения: а) сравнение средней арифметической с модой и медианой; б) использование цифр Вестергард; в) применение графического образа с помощью полулогарифмическая сетки Турбина; г) вычисление специальных критериев согласования и др.

    Таблица 44

    Координаты 7 точек кривой нормального распределения

    Таблица 45

    Вычисление координат точек кривой нормального распределения

    x - 1,5 (7 =

    х - а = 23,6

    х - 0,5 (7 = = 24,8

    х + 0,5ст = 27,2

    х + а = 28,4

    X + 1,5 (7 =

    Рис.16. Кривая нормального распределения, построенная по семи точках

    На практике при исследовании совокупности на предмет согласования ее распределения с нормальным часто пользуются "правилом 3сг".

    Математически доказано вероятность того, что отклонение от средней по абсолютной величине будет меньше тройного среднего квадратичного отклонения, равно 0,9973, то есть, вероятность того, что абсолютная величина отклонения превышает тройное среднее квадратическое отклонение, равна 0,0027 или очень мала. Исходя из принципа невозможности маловероятных событий, можно считать практически невозможным "случай превышения" 3 ст. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания (средней) не превышает тройного среднего квадратичного отклонения.

    В практических расчетах действуют таким образом. Если при неизвестном характере распределения исследуемой случайной величины рассчитанное значение отклонения от средней окажется меньше значения 3 СТ, то есть основания полагать, что исследуемая признак распределена нормально. Если же указанный параметр превысит числовое значение 3 СТ, можно считать, что распределение исследуемой величины не согласуется с нормальным распределением.

    Вычисления теоретических частот для исследуемого эмпирического ряда распределения принято называть выравниванием эмпирических кривых по нормальному (или любом другом) закона распределения. Этот процесс имеет важное как теоретическое, так практическое значение. Выравнивание эмпирических данных раскрывает закономерность в их распределении, которая может быть завуалирована случайной формой своего проявления. Установленную таким образом закономерность можно использовать для решения ряда практических задач.

    С распределением, близким к нормальному, исследователь встречается в различных сферах науки и областях практической деятельности человека. В экономике такого рода распределения встречаются реже, чем, скажем, в технике или биологии. Обусловлено это самой природой социально-экономических явлений, которые характеризуются большой сложностью взаимосвязанных и взаимосвязанных факторов, а также наличием ряда условий, ограничивающих свободную "игру" случаев. Но экономист должен обращаться к нормальному распределению, анализируя строение эмпирических распределений, как к некоторому эталону. Такое сравнение позволяет выяснить характер тех внутренних условий, которые определяют данную фигуру распределения.

    Проникновение сферы статистических исследований в область социально-экономических явлений позволило раскрыть существование большого количества различного типа кривых распределения. Однако не надо считать, что теоретическая концепция кривой нормального распределения вообще мало пригодна в статистико-математическом анализе такого типа явлений. Она может быть не всегда приемлема в анализе конкретного статистического распределения, но в области теории и практики выборочного метода исследования имеет первостепенное значение.

    Назовем основные аспекты применения нормального распределения в статистико-математическом анализе.

    1. Для определения вероятности конкретного значения признака. Это необходимо при проверке гипотез о соответствии того или иного эмпирического распределения нормальному.

    2. При оценке ряда параметров, например, средних, методом максимального правдоподобия. Суть его заключается в определении такого закона, которому подчиняется совокупность. Определяется и оценка, которая дает максимальные значения. Лучшее приближение к параметрам генеральной совокупности дает отношение:

    у = - 2 = е 2

    3. Для определения вероятности выборочных средних относительно генеральных средних.

    4. При определении доверительного интервала, в котором находится приближенное значение характеристик генеральной совокупности.