Метод интервалов: решение простейших строгих неравенств. Линейные неравенства

Вида ах 2 + bх + 0 0, где (вместо знака > может быть, разумеется, любой другой знак неравенства). Всеми необходимыми для решения таких неравенств фактами теории мы с вами располагаем, в чем сейчас и убедимся.

Пример 1 . Решить неравенство:

а) х 2 - 2х - 3 >0; б) х 2 - 2х - 3 < 0;
в) х 2 - 2х - 3 > 0; г) х 2 - 2х - 3 < 0.
Решение,

а) Рассмотрим параболу у = х 2 - 2х - 3, изображенную на рис. 117.

Решить неравенство х 2 - 2х - 3 > 0 - это значит ответить на вопрос, при каких значениях х ординаты точек параболы положительны.

Замечаем, что у > 0, т. е. график функции расположен выше оси х, при х < -1 или при х > 3.

Значит, решениями неравенства служат все точки открытого луча (- 00 , - 1), а также все точки открытого луча (3, +00).

Используя знак U (знак объединения множеств), ответ можно записать так: (-00 , - 1) U (3, +00). Впрочем, ответ можно записать и так: х < - 1; х > 3.

б) Неравенство х 2 - 2х - 3 < 0, или у < 0, где у = х 2 - 2х - 3, также можно решить с помощью рис. 117: график расположен ниже оси х, если -1 < х < 3. Поэтому решениями данного неравенства служат все точки интервала (- 1, 3).

в) Неравенство х 2 - 2х - 3 > 0 отличается от неравенства х 2 - 2х - 3 > 0 тем, что в ответ надо включить и корни уравнения х 2 - 2х - 3 = 0, т. е. точки х = -1

и х = 3. Таким образом, решениями данного нестрогого неравенства являются все точки луча (-00 , - 1], а также все точки луча .

Практичные математики обычно говорят так: зачем нам, решая неравенство ах 2 + bх + с > 0, аккуратно строить параболу график квадратичной функции

у = ах 2 + bх + с (как это было сделано в примере 1)? Достаточно сделать схематический набросок графика, для чего следует лишь найти корни квадратного трехчлена (точки пересечения параболы с осью х) и определить, куда направлены ветви параболы - вверх или вниз. Этот схематический набросок даст наглядное истолкование решению неравенства.

Пример 2. Решить неравенство - 2х 2 + Зх + 9 < 0.
Решение.

1) Найдем корни квадратного трехчлена - 2х 2 + Зх + 9: х 1 = 3; х 2 = - 1,5.

2) Парабола, служащая графиком функции у = -2х 2 + Зх + 9, пересекает ось х в точках 3 и - 1,5, а ветви параболы направлены вниз, поскольку старший коэффициент - отрицательное число - 2. На рис. 118 представлен набросок графика.

3) Используя рис. 118, делаем вывод: у < 0 на тех промежутках оси х, где график расположен ниже оси х, т.е. на открытом луче (-оо, -1,5) или на открытом луче C, +оо).
Ответ: х < -1,5; х > 3.

Пример 3. Решить неравенство 4х 2 - 4х + 1 < 0.
Решение.

1) Из уравнения 4х 2 - 4х + 1 = 0 находим .

2) Квадратный трехчлен имеет один корень ; это значит, что парабола, служащая графиком квадратного трехчлена, не пересекает ось х, а касается ее в точке . Ветви параболы направлены вверх (рис. 119.)

3) С помощью геометрической модели, представленной на рис. 119, устанавливаем, что заданное неравенство выполняется только в точке , поскольку при всех других значениях х ординаты графика положительны.
Ответ: .
Вы, наверное, заметили, что фактически в примерах 1, 2, 3 использовался вполне определенный алгоритм решения квадратных неравенств, оформим его.

Алгоритм решения квадратного неравенства ах 2 + bх + 0 0 (ах 2 + bх + с < 0)

На первом шаге этого алгоритма требуется найти корни квадратного трехчлена. Но ведь корни могут и не существовать, что же делать? Тогда алгоритм неприменим, значит, надо рассуждать как-то по-другому. Ключ к этим рассуждениям дают следующие теоремы.

Иными словами, если D < 0, а > 0, то неравенство ах 2 + bх + с > 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с < 0 не имеет решений.
Доказательство. Графиком функции у = ах 2 + bх + с является парабола, ветви которой направлены вверх (поскольку а > 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 120. Видим, что при всех х график расположен выше оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с > 0, что и требовалось доказать.

Иными словами, если D < 0, а < 0, то неравенство ах 2 + bх + с < 0 выполняется при всех х; напротив, неравенство ах 2 + bх + с > 0 не имеет решений.

Доказательство. Графиком функции у = ах 2 + bх +с является парабола, ветви которой направлены вниз (поскольку а < 0) и которая не пересекает ось х, так как корней у квадратного трехчлена по условию нет. График представлен на рис. 121. Видим, что при всех х график расположен ниже оси х, а это значит, что при всех х выполняется неравенство ах 2 + bх + с < 0, что и требовалось доказать.

Пример 4 . Решить неравенство:

а) 2х 2 - х + 4 >0; б) -х 2 + Зх - 8 >0.

а) Найдем дискриминант квадратного трехчлена 2х 2 - х + 4. Имеем D = (-1) 2 - 4 2 4 = - 31 < 0.
Старший коэффициент трехчлена (число 2) положителен.

Значит, по теореме 1, при всех х выполняется неравенство 2x 2 - х + 4 > 0, т. е. решением заданного неравенства служит вся (-00 , + 00).

б) Найдем дискриминант квадратного трехчлена - х 2 + Зх - 8. Имеем D = З2 - 4 (- 1) (- 8) = - 23 < 0. Старший коэффициент трехчлена (число - 1) отрицателен. Следовательно, по теореме 2, при всех х выполняется неравенство - х 2 + Зx - 8 < 0. Это значит, что неравенство - х 2 + Зх - 8 0 не выполняется ни при каком значении х, т. е. заданное неравенство не имеет решений.

Ответ: а) (-00 , + 00); б) нет решений.

В следующем примере мы познакомимся еще с одним способом рассуждений, который применяется при решении квадратных неравенств.

Пример 5. Решить неравенство Зх 2 - 10х + 3 < 0.
Решение. Разложим квадратный трехчлен Зx 2 - 10x + 3 на множители. Корнями трехчлена являются числа 3 и , поэтому воспользовавшись ах 2 + bх + с = а (х - x 1)(x - х 2),получим Зx 2 - 10х + 3 = 3(х - 3) (х - )
Отметим на числовой прямой корни трехчлена: 3 и (рис. 122).

Пусть х > 3; тогда x-3>0 и x->0, а значит, и произведение 3(х - 3)(х - ) положительно. Далее, пусть < х < 3; тогда x-3< 0, а х- >0. Следовательно, произведение 3(х-3)(х-) отрицательно. Пусть, наконец, х <; тогда x-3< 0 и x- < 0. Но в таком случае произведение
3(x -3)(x -) положительно.

Подводя итог рассуждениям, приходим к выводу: знаки квадратного трехчлена Зx 2 - 10х + 3 изменяются так, как показано на рис. 122. Нас же интересует, при каких х квадратный трехчлен принимает отрицательные значения. Из рис. 122 делаем вывод: квадратный трехчлен Зx 2 - 10х + 3 принимает отрицательные значения для любого значения х из интервала (, 3)
Ответ (, 3), или < х < 3.

Замечание. Метод рассуждений, который мы применили в примере 5, обычно называют методом интервалов (или методом промежутков). Он активно используется в математике для решения рациональных неравенств. В 9-м классе мы изучим метод интервалов более детально.

Пример 6 . При каких значениях параметра р квадратное уравнение х 2 - 5х + р 2 = 0:
а) имеет два различных корня;

б) имеет один корень;

в) не имеет -корней?

Решение. Число корней квадратного уравнения зависит от знака его дискриминанта D. В данном случае находим D = 25 - 4р 2 .

а) Квадратное уравнение имеет два различных корня, если D>0, значит, задача сводится к решению неравенства 25 - 4р 2 > 0. Умножим обе части этого неравенства на -1 (не забыв изменить при этом знак неравенства). Получим равносильное неравенство 4р 2 - 25 < 0. Далее имеем 4 (р - 2,5) (р + 2,5) < 0.

Знаки выражения 4(р - 2,5) (р + 2,5) указаны на рис. 123.

Делаем вывод, что неравенство 4(р - 2,5)(р + 2,5) < 0 выполняется для всех значений р из интервала (-2,5; 2,5). Именно при этих значениях параметра р данное квадратное уравнение имеет два различных корня.

б) квадратное уравнение имеет один корень, если D - 0.
Как мы установили выше, D = 0 при р = 2,5 или р = -2,5.

Именно при этих значениях параметра р данное квадратное уравнение имеет только один корень.

в) Квадратное уравнение не имеет корней, если D < 0. Решим неравенство 25 - 4р 2 < 0.

Получаем 4р 2 - 25 > 0; 4 (р-2,5)(р + 2,5)>0, откуда (см. рис. 123) р < -2,5; р > 2,5. При этих значениях параметра р данное квадратное уравнение не имеет корней.

Ответ: а) при р (-2,5, 2,5);

б) при р = 2,5 илир = -2,5;
в) при р < - 2,5 или р > 2,5.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Помощь школьнику онлайн , Математика для 8 класса скачать , календарно-тематическое планирование

Метод интервалов – простой способ решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.

1. Рассмотрим, например, такое неравенство

Метод интервалов позволяет решить его за пару минут.

В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.

Метод интервалов основан на следующем свойстве дробно-рациональной функции.

Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует.

Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида .

Где и - корни квадратного уравнения .

Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.

Нули знаменателя и - выколотые точки, так как в этих точках функция в левой части неравенства не определена (на нуль делить нельзя). Нули числителя и - закрашены, так как неравенство нестрогое. При и наше неравенство выполняется, так как обе его части равны нулю.

Эти точки разбивают ось на промежутков.

Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным - либо "плюс", либо "минус".

И поэтому для определения знака функции на каждом таком промежутке мы берем любую точку, принадлежащую этому промежутку. Ту, которая нам удобна.
. Возьмем, например, и проверим знак выражения в левой части неравенства. Каждая из "скобок" отрицательная. Левая часть имеет знак .

Следующий промежуток: . Проверим знак при . Получаем, что левая часть поменяла знак на .

Возьмем . При выражение положительно - следовательно, оно положительно на всем промежутке от до .

При левая часть неравенства отрицательна.

И, наконец, class="tex" alt="x>7"> . Подставим и проверим знак выражения в левой части неравенства. Каждая "скобочка" положительна. Следовательно, левая часть имеет знак .

Мы нашли, на каких промежутках выражение положительно. Осталось записать ответ:

Ответ: .

Обратите внимание: знаки на промежутках чередуются. Это произошло потому, что при переходе через каждую точку ровно один из линейных множителей поменял знак, а остальные сохранили его неизменным .

Мы видим, что метод интервалов очень прост. Чтобы решить дробно-рациональное неравенство методом интервалов, приводим его к виду:

Или class="tex" alt="\genfrac{}{}{}{0}{\displaystyle P\left(x \right)}{\displaystyle Q\left(x \right)} > 0"> , или , или .

(в левой части - дробно-рациональная функция, в правой - нуль).

Затем - отмечаем на числовой прямой точки, в которых числитель или знаменатель обращаются в нуль.
Эти точки разбивают всю числовую прямую на промежутки, на каждом из которых дробно-рациональная функция сохраняет свой знак.
Остается только выяснить ее знак на каждом промежутке.
Мы делаем это, проверяя знак выражения в любой точке, принадлежащей данному промежутку. После этого - записываем ответ. Вот и всё.

Но возникает вопрос: всегда ли знаки чередуются? Нет, не всегда! Надо быть внимательным и не расставлять знаки механически и бездумно.

2. Рассмотрим еще одно неравенство.

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle \left(x-2 \right)^2}{\displaystyle \left(x-1 \right)\left(x-3 \right)}>0">

Снова расставляем точки на оси . Точки и - выколотые, поскольку это нули знаменателя. Точка - тоже выколота, поскольку неравенство строгое.

При числитель положителен, оба множителя в знаменателе отрицательны. Это легко проверить, взяв любое число с данного промежутка, например, . Левая часть имеет знак :

При числитель положителен; первый множитель в знаменателе положителен, второй множитель отрицателен. Левая часть имеет знак :

При ситуация та же! Числитель положителен, первый множитель в знаменателе положителен, второй отрицателен. Левая часть имеет знак :

Наконец, при class="tex" alt="x>3"> все множители положительны, и левая часть имеет знак :

Ответ: .

Почему нарушилось чередование знаков? Потому что при переходе через точку "ответственный" за неё множитель не изменил знак . Следовательно, не изменила знак и вся левая часть нашего неравенства.

Вывод: если линейный множитель стоит в чётной степени (например, в квадрате), то при переходе через точку знак выражения в левой части не меняется . В случае нечётной степени знак, разумеется, меняется.

3. Рассмотрим более сложный случай. От предыдущего отличается тем, что неравенство нестрогое:

Левая часть та же, что и в предыдущей задаче. Та же будет и картина знаков:

Может, и ответ будет тем же? Нет! Добавляется решение Это происходит потому, что при и левая, и правая части неравенства равны нулю - следовательно, эта точка является решением.

Ответ: .

В задаче на ЕГЭ по математике такая ситуация встречается часто. Здесь абитуриенты попадают в ловушку и теряют баллы. Будьте внимательны!

4. Что делать, если числитель или знаменатель не удается разложить на линейные множители? Рассмотрим такое неравенство:

Квадратный трехчлен на множители разложить нельзя: дискриминант отрицателен, корней нет. Но ведь это и хорошо! Это значит, что знак выражения при всех одинаков, а конкретно - положителен. Подробнее об этом можно прочитать в статье о свойствах квадратичной функции .

И теперь мы можем поделить обе части нашего неравенства на величину , положительную при всех . Придём к равносильному неравенству:

Которое легко решается методом интервалов.

Обратите внимание - мы поделили обе части неравенства на величину, о которой точно знали, что она положительна. Конечно, в общем случае не стоит умножать или делить неравенство на переменную величину, знак которой неизвестен.

5 . Рассмотрим еще одно неравенство, на вид совсем простое:

Так и хочется умножить его на . Но мы уже умные, и не будем этого делать. Ведь может быть как положительным, так и отрицательным. А мы знаем, что если обе части неравенства умножить на отрицательную величину - знак неравенства меняется.

Мы поступим по другому - соберём всё в одной части и приведём к общему знаменателю. В правой части останется нуль:

Class="tex" alt="\genfrac{}{}{}{0}{\displaystyle x-2}{\displaystyle x}>0">

И после этого - применим метод интервалов .

Линейными называются неравенства левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1 -х+3; 7х 0;

5 >4 - 6x 9- x < x + 5 .

1) Строгие неравенства: ax +b>0 либо ax + b<0

2) Нестрогие неравенства: ax +b≤0 либо ax + b 0

Разберем такое задание . Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным. Поэтому есть важное понятие, вот эти стрелочки <=> - это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными, или эквивалентными , если они не изменяет множества решений.

Сходные правила решения неравенств.

Если какое-либо слагаемое переместить из одной части неравенства в другую, заменив при этом его знак на противоположный, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, заменив при этом знак неравенства на противоположный, то получим неравенство, эквивалентное данному.

Используя эти правила вычислим нижеследующие неравенства.

1) Разберем неравенство 2x - 5 > 9 .

Это линейное неравенство , найдем его решение и обсудим основные понятия.

2x - 5 > 9 <=> 2x > 14 (5 перенесли в левую часть с противоположным знаком), далее поделили все на 2 и имеем x > 7 . Нанесем множество решений на ось x

Нами получен положительно направленный луч. Отметим множество решений либо в виде неравенства x > 7 , либо в виде интервала х(7; ∞). А что выступает частным решением этого неравенства? Например, x = 10 - это частное решение этого неравенства, x = 12 - это тоже частное решение этого неравенства.

Частных решений много, но наша задача - найти все решения. А решений, как правило, бесчисленное множество.

Разберем пример 2:

2) Решить неравенство 4a - 11 > a + 13 .

Решим его: а переместим в одну сторону, 11 переместим в другую сторону, получим 3a < 24, и в результате после деления обеих частей на 3 неравенство имеет вид a<8 .

4a - 11 > a + 13 <=> 3a < 24 <=> a < 8 .

Тоже отобразим множество a < 8 , но уже на оси а .

Ответ либо пишем в виде неравенства a < 8, либо а (-∞;8), 8 не включается.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Например, неравенством является выражение \(x>5\).

Виды неравенств:

Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

Например:
\(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

\(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

\(2x+1\geq4(5-x)\)

Переменная только в первой степени

\(3x^2-x+5>0\)

Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

\(\log_{4}{(x+1)}<3\)

\(2^{x}\leq8^{5x-2}\)

... и так далее.

Что такое решение неравенства?

Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

\(x+6>10\) \(|-6\)
\(x>4\)

То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

Ответ: \(x\in(4;+\infty)\)

Когда в неравенстве меняется знак?

В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

\(3>1\) \(|\cdot2\)
\(6>2\)

Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

\(3>1\) \(|\cdot(-3)\)
\(-9>-3\)

Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
С делением получится аналогично, можете проверить сами.

Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

Пример: Решить неравенство \(2(x+1)-1<7+8x\)
Решение:

\(2x+2-1<7+8x\)

Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

\(2x-8x<7-2+1\)

\(-6x<6\) \(|:(-6)\)

Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

Запишем ответ в виде интервала

Ответ: \(x\in(-1;\infty)\)

Неравенства и ОДЗ

Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

Пример: Решить неравенство \(\sqrt{x+1}<3\)

Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

\(x+1<9\) \(|-1\)
\(x<8\)

Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

\(\sqrt{-5+1}<3\)
\(\sqrt{-4}<3\)

Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

\(x+1\geq0\)
\(x\geq-1\)

И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

Ответ: \(\left[-1;8\right)\)