Формулы вычисления частных производных. Частные производные функции двух переменных.Понятие и примеры решений

Пусть задана функция двух переменных. Дадим аргументу приращение, а аргумент оставим неизменным. Тогда функция получит приращение, которое называется частным приращением по переменной и обозначается:

Аналогично, фиксируя аргумент и придавая аргументу прираще-ние, получим частное приращение функции по переменной:

Величина называется полным прира-щениием функции в точке.

Определение 4. Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной переменной, когда последнее стремится к нулю (если этот предел существует). Обозначается частная производная так: или, или.

Таким образом, по определению имеем:

Частные производные функции вычисляются по тем же правилам и формулам, что и функция одной переменной, при этом учитывается, что при дифференцировании по переменной, считается постоянной, а при дифференцировании по переменной постоянной считается.

Пример 3. Найти частные производные функций:

Решение. а) Чтобы найти считаем постоянной величиной и дифференцируем как функцию одной переменной:

Аналогично, считая постоянной величиной, находим:

Определение 5. Полным дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.

Учитывая, что дифференциалы независимых переменных совпадают с их приращениями, т.е. , формулу полного дифференциала можно записать в виде

Пример 4. Найти полный дифференциал функции.

Решение. Так как, то по формуле полного дифференциала находим

Частные производные высших порядков

Частные производные и называют частными производными первого порядка или первыми частными производными.

Определение 6. Частными производными второго порядка функции называются частные производные от частных производных первого порядка.

Частных производных второго порядка четыре. Они обозначаются следующим образом:

Аналогично определяются частные производные 3-го, 4-го и более высоких порядков. Например, для функции имеем:

Частные производные второго или более высокого порядка, взятые по различным переменным, называются смешанными частными производными. Для функции таковыми являются производные. Заметим, что в случае, когда смешанные производные непрерывны, то имеет место равенство.

Пример 5. Найти частные производные второго порядка функции

Решение. Частные производные первого порядка для данной функции найдены в примере 3:

Дифференцируя и по переменным х и y, получим

Пусть задана функция . Так как x и y – независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной x приращение , сохраняя значение y неизменным. Тогда z получит приращение, которое называется частным приращением z по x и обозначается . Итак, .

Аналогично получаем частное приращение z по y: .

Полное приращение функции z определяется равенством .

Если существует предел , то он называется частной производной функции в точке по переменной x и обозначается одним из символов:

.

Частные производные по x в точке обычно обозначают символами .

Аналогично определяется и обозначается частная производная от по переменной y:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находится по формулам и правилам вычисления производных функции одной переменной (при этом соответственно x или y считаются постоянной величиной).

Частные производные и называют частными производными первого порядка. Их можно рассматривать как функции от . Эти функции могут иметь частные производные, которые называются частными производными второго порядка. Они определяются и обозначаются следующим образом:

; ;

; .


Дифференциалы 1 и 2 порядка функции двух переменных.

Полный дифференциал функции (формула 2.5) называют дифференциалом первого порядка.

Формула для вычисления полного дифференциала имеет следующий вид:

(2.5) или , где ,

частные дифференциалы функции .

Пусть функция имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле . Найдем его:


Отсюда: . Символически это записывается так:

.


НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

Первообразная функции, неопределенный интеграл, свойства.

Функция F(x) называется первообразной для данной функ­ции f{x), если F"(x)=f(x), или, что то же, если dF(x)=f(x)dx.

Теорема. Если функция f(x), определенная в некотором промежутке (X) конечной или бесконечной длины, имеет одну первообразную, F(x), то она имеет и бесконечно много первообразных; все они содержатся в выра­жении F(x)+С, где С - произвольная постоянная.

Совокупность всех первообразных для данной функции f(x), определенной в некотором промежутке или на некотором отрезке конечной или бесконечной длины, называется неопределенным интегралом от функ­ции f(x) [или от выражения f(x)dx ] и обозначается символом .



Если F(x) есть одна из первообразных для f(x), то согласно теореме о первообразных

, где С есть произвольная постоянная.

По определению первообразной F"(x)=f(x) и, следовательно, dF(x)=f(x) dx. В формуле (7.1), f(x) называется подинтегральной функцией, а f(x) dx - подинтегральным выражением.

Понятие функции многих переменных

Пусть имеется n-перем-х и каждому х 1 , х 2 … х n из нек-го множ-ва х поставлено в соответствие опред. число Z, тогда на множ-ве х задана ф-ция Z=f(х 1 , х 2 … х n) многих переменных.

Х – обл-ть опред-я ф-ции

х 1 , х 2 … х n – независ-е переем-е (аргументы)

Z – ф-ция Пример: Z=П х 2 1 *х 2 (Объем цилиндра)

Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х 1 , х 2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.

Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.

Пример: х = х 0 , зн. пл-ть Х || 0уz у = у 0 0хz Вид ф-ции: Z=f(х 0 ,y); Z=f(x,у 0)

Например: Z=x 2 +y 2 -2y

Z= x 2 +(y-1) 2 -1 x=0 Z=(y-1) 2 -1 y=1 Z= x 2 -1 Z=0 x 2 +(y-1) 2 -1

Парабола окруж-ть(центр(0;1)

Пределы и непрерывность ф-ций двух переменных

Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х 0 ,y 0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x-х 0 |<б; |y-y 0 |<б выполняется нерав-во |f(x,y)-A|

Z=f(х;у) непрерывна в т.(х 0 ,y 0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х 0 и у к у 0 ; - этот предел = знач-ю

ф-ции в т.(х 0 ,y 0), т.е. limf(х;у)=f(х 0 ,y 0)

Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области

Дифференциал ф-ции, его геом смысл. Применение диф-ла в приближенных значениях.

dy=f’(x)∆x – диф-л ф-ции

dy=dx, т.е. dy=f ’(x)dx если у=х

С геом точки зрения диф-л ф-ции – это приращение ординаты касательной, проведенной к графику ф-ции в точке с абсциссой х 0

Диф-л применяют в вычислении приближ. значений ф-ции по формуле: f(х 0 +∆x)~f(х 0)+f’(х 0)∆x

Чем ближе ∆x к х, тем результат точнее

Частные производные первого и второго порядка

Производная первого порядка(которая называется частной)

О. Пусть х, у – приращения независимых переменных х и у в некоторой точке из области Х. Тогда величина, равная z = f(x+ х, y+ у) = f(x,y) называется полным приращением в точке х 0, у 0. Если переменную х зафиксировать, а переменной у дать приращение у, то получим zу = f(x,y,+ у) – f(x,y)



Аналогично определяется частная производная от переменной у, т.е.

Частную производную функции 2-х переменных находят по тем же правилам, что и для функций одной переменной.

Отличие состоит в том, что при дифференциации функции по переменной х, у считается const, а при дифференцировании по у, х считается const.

Изолированные const соединены с функцией операциями сложения/вычитания.

Связанные const соединены с функцией операциями умножения/деления.

Производная изолированной const = 0

1.4.Полный дифференциал функции 2-х переменных и его приложения

Пусть z = f(x,y), тогда

tz = - называется полным приращением

Частная производная 2-го порядка

Для непрерывных функций 2-х переменных смешанные частные производные 2-го порядка и совпадают.

Применение частных производных к определению частных производных max и min функций называются экстремумами.

О. Точки называются max или min z = f(x,y), если существуют некоторые отрезки такие, что для всех x и y из этой окрестности f(x,y)

Т. Если задана точка экстремума функции 2-х переменных, то значение частных производных в этой точке равны 0, т.е. ,

Точки , в которых частные производные первого порядка называются стационарными или критическими.

Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума.

Пусть функция z = f(x,y) дважды дифференцируема, и стационарная точка,

1) , причем maxA<0, minA>0.

1.4.(*)Полный дифференциал. Геометрический смысл дифференциала. Приложение дифференциала в приближенных вычислениях

О. Пусть функция y = f(x) определена в некоторой окрестности в точки . Функция f(x) называется дифференцируемой в точке , если ее приращение в этой точке , где представлено в виде (1)

Где А – постоянная величина, не зависящая от , при фиксированной точке х, - бесконечно малая при . Линейная относительно функция А называется дифференциалом функции f(x) в точке и обозначается df() или dy.

Таким образом, выражение (1) можно записать в виде ().

Дифференциал функции в выражении (1) имеет вид dy = A . Как и всякая линейная функция, он определен для любого значений в то время, как приращение функции необходимо рассматривать только для таких , для которых + принадлежит области определения функции f(x).

Для удобства записи дифференциала приращение обозначают dx и называют его дифференциалом независимой переменной x. Поэтому дифференциал записывают в виде dy = Adx.

Если функция f(x) дифференцируема в каждой точке некоторого интервала, то ее дифференциал является функцией двух переменных – точки x и переменной dx:

Т. Для того, чтобы функция y = g(x) была дифференцируема в некоторой точке , необходимо и достаточно, чтобы она имела в этой точке производную, при этом

(*)Доказательство. Необходимость.

Пусть функция f(x) дифференцируема в точке , т.е. . Тогда

Поэтому производная f’() существует и равна А. Отсюда dy = f’()dx

Достаточность.

Пусть существует производная f’(), т.е. = f’(). Тогда кривую y = f(x) отрезком касательной. Для вычисления значения функции в точке х берут в некоторой ее окрестности точку , такую, что не составляет труда найти f() и f’()/

На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции.

Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде.

Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: - функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

Полезно знать геометрический смысл функций. Функции одной переменной соответствует определенная линия на плоскости, например, – всем знакомая школьная парабола. Любая функция двух переменных с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ.

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.



Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения:

Или – частная производная по «икс»

Или – частная производная по «игрек»

Начнем с .

Важно! Когда мы находим частную производную по «икс», то переменнаясчитается константой (постоянным числом).

Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже.

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива для(и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид: и .

Итак, частные производные первого порядка найдены

Калькулятор вычисляет производные всех элементарных функций, приводя подробное решение. Переменная дифференцирования определяется автоматически.

Производная функции — одно из важнейших понятий в математическом анализе. К появлению производной привели такие задачи, как, например, вычисление мгновенной скорости точки в момент времени , если известен путь в зависимоти от времени , задача о нахождении касательной к функции в точке.

Чаще всего производная функции определяется как предел отношения приращения функции к приращению аргумента, если он существует.

Определение. Пусть функция определена в некоторой окрестности точки . Тогда производной функции в точке называется предел, если он существует

Как вычислить производную функции?

Для того, чтобы научиться дифференцировать функции, нужно выучить и понять правила дифференцирования и научиться пользоваться таблицей производных .

Правила дифференцирования

Пусть и — произвольные дифференцируемые функции от вещественной переменной, — некоторая вещественная постоянная. Тогда

— правило дифференцирования произведения функций

— правило дифференцирования частного функций

0" height="33" width="370" style="vertical-align: -12px;"> — дифференцирование функции с переменным показателем степени

— правило дифференцирования сложной функции

— правило дифференцирования степенной функции

Производная функции онлайн

Наш калькулятор быстро и точно вычислит производную любой функции онлайн. Программа не допустит ошибки при вычислениях производной и поможет избежать долгих и нудных расчётов. Онлайн калькулятор будет полезен и в том случае, когда есть необходимость проверить на правильность своё решение, и если оно неверно, быстро найти ошибку.