Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных. Основы анализа данных Регрессивная зависимость

Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы регрессионного анализа.

    Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.

    Определение зависимых и независимых (объясняющих) переменных.

    Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.

    Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).

    Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)

    Оценка точности регрессионного анализа.

    Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.

    Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, - к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии , оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

    положительная линейная регрессия (выражается в равномерном росте функции);

    положительная равноускоренно возрастающая регрессия;

    положительная равнозамедленно возрастающая регрессия;

    отрицательная линейная регрессия (выражается в равномерном падении функции);

    отрицательная равноускоренно убывающая регрессия;

    отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

    Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.

    Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков . Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммамиостатков .

При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент - коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис "Пакет анализа" и инструмент анализа "Регрессия". Задаем входные интервалы X и Y. Входной интервал Y - это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X - это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.

На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а -8.3в .

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значениеR-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно,множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

Переменная X 1

* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты выводаостатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки

Наблюдение

Предсказанное Y

Остатки

Стандартные остатки

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными нарис. 8.3 . Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Рис. 8.3. Исходные данные и линия регрессии

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4 .

Таблица 8.4. Результаты прогнозирования переменной Y

Y(прогнозируемое)

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

    построили уравнение регрессии;

    установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;

    установили направление связи между переменными;

    оценили качество полученной регрессионной прямой;

    смогли увидеть отклонения расчетных данных от данных исходного набора;

    предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

В этой работе мы рассмотрели основные характеристики описательной статистики и среди них такие понятия, каксреднее значение ,медиана ,максимум ,минимум и другие характеристики вариации данных.

Также было кратко рассмотрено понятие выбросов . Рассмотренные характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности.

Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.

1. Впервые термин «регрессия» был введен основателем биометрии Ф. Гальтоном (XIX в.), идеи которого были развиты его последователем К. Пирсоном.

Регрессионный анализ - метод статистической обработки данных, позволяющий измерить связь между одной или несколькими причинами (факторными признаками) и следствием (результативным признаком).

Признак - это основная отличительная черта, особенность изучаемого явления или процесса.

Результативный признак - исследуемый показатель.

Факторный признак - показатель, влияющий на значение результативного признака.

Целью регрессионного анализа является оценка функциональной зависимости среднего значения результативного признака (у ) от факторных (х 1 , х 2 , …, х n ), выражаемой в виде уравнения регрессии

у = f (x 1 , х 2 , …, х n ). (6.1)

Различают два вида регрессии: парную и множественную.

Парная (простая) регрессия - уравнение вида:

у = f (x ). (6.2)

Результативный признак при парной регрессии рассматривается как функция от одного аргумента, т.е. одного факторного признака.

Регрессионный анализ включает в себя следующие этапы:

· определение типа функции;

· определение коэффициентов регрессии;

· расчет теоретических значений результативного признака;

· проверку статистической значимости коэффициентов регрессии;

· проверку статистической значимости уравнения регрессии.

Множественная регрессия - уравнение вида:

у = f (x 1 , х 2 , …, х n ). (6.3)

Результативный признак рассматривается как функция от нескольких аргументов, т.е. много факторных признаков.

2. Для того чтобы правильно определить тип функции нужно на основании теоретических данных найти направление связи.

По направлению связи регрессия делится на:

· прямую регрессию, возникающую при условии, что с увеличением или уменьшением независимой величины «х» значения зависимой величины «у» также соответственно увеличиваются или уменьшаются;

· обратную регрессию, возникающую при условии, что с увеличением или уменьшением независимой величины «х» зависимая величина «у» соответственно уменьшается или увеличивается.

Для характеристики связей используют следующие виды уравнений парной регрессии:

· у=a+bx линейное;

· y=e ax + b – экспоненциальное;

· y=a+b/x – гиперболическое;

· y=a+b 1 x+b 2 x 2 – параболическое;

· y=ab x – показательное и др.

где a, b 1 , b 2 - коэффициенты (параметры) уравнения; у - результативный признак; х - факторный признак.

3. Построение уравнения регрессии сводится к оценке его коэффициентов (параметров), для этого используют метод наименьших квадратов (МНК).

Метод наименьших квадратов позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака «у »от теоретических «у х » минимальна, то есть

Параметры уравнения регрессии у=a+bх по методу наименьших квадратов оцениваются с помощью формул:

где а – свободный коэффициент, b - коэффициент регрессии, показывает на сколько изменится результативный признак «y » при изменении факторного признака «x » на единицу измерения.

4. Для оценки статистической значимости коэффициентов регрессии используется -критерий Стьюдента.

Схема проверки значимости коэффициентов регрессии:

1) Н 0: a =0, b =0 - коэффициенты регрессии незначимо отличаются от нуля.

Н 1: a≠ 0, b≠ 0 - коэффициенты регрессии значимо отличаются от нуля.

2) р =0,05 – уровень значимости.

где m b , m a - случайные ошибки:

; . (6.7)

4) t табл (р; f ),

где f =n-k- 1 - число степеней свободы (табличное значение), n - число наблюдений, k х».

5) Если , то отклоняется, т.е. коэффициент значимый.

Если , то принимается, т.е. коэффициент незначимый.

5. Для проверки правильности построенного уравнения регрессии применяется критерий Фишера.

Схема проверки значимости уравнения регрессии:

1) Н 0: уравнение регрессии незначимо.

Н 1: уравнение регрессии значимо.

2) р =0,05 – уровень значимости.

3) , (6.8)

где - число наблюдений; k - число параметров в уравнении при переменных «х» ; у - фактическое значение результативного признака; y x - теоретическое значение результативного признака; - коэффициент парной кореляции.

4) F табл (р; f 1 ; f 2 ),

где f 1 =k, f 2 =n-k-1- число степеней свободы (табличные значения).

5) Если F расч >F табл , то уравнение регрессии подобрано верно и может применяться на практике.

Если F расч , то уравнение регрессии подобрано неверно.

6. Основным показателем, отражающим меру качества регрессионного анализа, является коэффициент детерминации (R 2).

Коэффициент детерминации показывает, какая доля зависимой переменной «у » учтена в анализе и вызвана влиянием на нее факторов, включенных в анализ.

Коэффициент детерминации (R 2) принимает значения в промежутке . Уравнение регрессии является качественным, если R 2 ≥0,8.

Коэффициент детерминации равен квадрату коэффициента корреляции, т.е.

Пример 6.1. По следующим данным построить и проанализировать уравнение регрессии:

Решение.

1) Вычислить коэффициент корреляции: . Связь между признаками прямая и умеренная.

2) Построить уравнение парной линейной регрессии.

2.1) Составить расчетную таблицу.

Х у Ху х 2 у х (у-у х) 2
55,89 47,54 65,70
45,07 15,42 222,83
54,85 34,19 8,11
51,36 5,55 11,27
42,28 45,16 13,84
47,69 1,71 44,77
45,86 9,87 192,05
Сумма 159,45 558,55
Среднее 77519,6 22,78 79,79 2990,6

,

Уравнение парной линейной регрессии: у х =25,17+0,087х.

3) Найти теоретические значения «у x » путем подстановки в уравнение регрессии фактических значений «х ».

4) Построить графики фактических «у» и теоретических значений «у х » результативного признака (рисунок 6.1):r xy =0,47) и небольшим числом наблюдений.

7) Вычислить коэффициент детерминации: R 2 =(0,47) 2 =0,22. Построенное уравнение некачественное.

Т.к. вычисления при проведении регрессионного анализа достаточно объемные, рекомендуется пользоваться специальными программами («Statistica 10», SPSS и др.).

На рисунке 6.2 приведена таблица с результатами регрессионного анализа, проведенного с помощью программы «Statistica 10».

Рисунок 6.2. Результаты регрессионного анализа, проведенного с помощью программы «Statistica 10»

5. Литература:

1. Гмурман В.Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов / В.Е. Гмурман. - М.: Высшая школа, 2003. - 479 с.

2. Койчубеков Б.К. Биостатистика: Учебное пособие. - Алматы: Эверо, 2014. - 154 с.

3. Лобоцкая Н.Л. Высшая математика. / Н.Л. Лобоцкая, Ю.В. Морозов, А.А. Дунаев. - Мн.: Высшая школа, 1987. - 319 с.

4. Медик В.А., Токмачев М.С., Фишман Б.Б. Статистика в медицине и биологии: Руководство. В 2-х томах / Под ред. Ю.М. Комарова. Т. 1. Теоретическая статистика. - М.: Медицина, 2000. - 412 с.

5. Применение методов статистического анализа для изучения общественного здоровья и здравоохранения: учебное пособие / ред. Кучеренко В.З. - 4-е изд., перераб. и доп. – М.: ГЭОТАР - Медиа, 2011. - 256 с.

В результате изучения материала главы 4 обучающийся должен:

знать

  • основные понятия регрессионного анализа;
  • методы оценивания и свойства оценок метода наименьших квадратов;
  • основные правила проверки значимости и интервального оценивания уравнения и коэффициентов регрессии;

уметь

  • находить по выборочным данным оценки параметров двумерной и множественной моделей уравнений регрессии, анализировать их свойства;
  • проверять значимость уравнения и коэффициентов регрессии;
  • находить интервальные оценки значимых параметров;

владеть

  • навыками статистического оценивания параметров двумерного и множественного уравнения регрессии; навыками проверки адекватности регрессионных моделей;
  • навыками получения уравнения регрессии со всеми значимыми коэффициентами с использованием аналитического программного обеспечения.

Основные понятия

После проведения корреляционного анализа, когда выявлено наличие статистически значимых связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию вида зависимостей с использованием методов регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы„ вычисляют оценки параметров уравнения связи и анализируют точность полученного уравнения .

Функция|, описывающая зависимость условного среднего значения результативного признака у от заданных значений аргументов, называется уравнением регрессии.

Термин "регрессия" (от лат. regression – отступление, возврат к чему- либо) введен английским психологом и антропологом Ф. Гальтоном и связан с одним из его первых примеров, в котором Гальтон, обрабатывая статистические данные, связанные с вопросом о наследственности роста, нашел, что если рост отцов отклоняется от среднего роста всех отцов на х дюймов, то рост их сыновей отклоняется от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа регрессией к среднему состоянию.

Термин "регрессия" широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует статистическую зависимость.

Для точного описания уравнения регрессии необходимо знать условный закон распределения результативного показателя у. В статистической практике такую информацию получить обычно не удается, поэтому ограничиваются поиском подходящих аппроксимаций для функции f(x u х 2,.... л*), основанных на предварительном содержательном анализе явления или на исходных статистических данных.

В рамках отдельных модельных допущений о типе распределения вектора показателей <) может быть получен общий вид уравнения регрессии , где. Например, в предположении о том, что исследуемая совокупность показателей подчиняется ()-мерному нормальному закону распределения с вектором математических ожиданий

Где, и ковариационной матрицей,

где– дисперсия у,

Уравнение регрессии (условное математическое ожидание) имеет вид

Таким образом, если многомерная случайная величина ()

подчиняется ()-мерному нормальному закону распределения, то уравнение регрессии результативного показателя у по объясняющим переменнымимеет линейный по х вид.

Однако в статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии f(x), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результативного показателя у при заданных значениях аргументов х.

Рассмотрим взаимоотношение между истинной , модельнойи оценкой регрессии . Пусть результативный показатель у связан с аргументом х соотношением

где– случайная величина, имеющая нормальный закон распределения, причеми. Истинная функция регрессии в этом случае имеет вид

Предположим, что точный вид истинного уравнения регрессии нам неизвестен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношениеми представленной на рис. 4.1.

Рис. 4.1. Взаимное расположение истинной f(x) и теоретической уы модели регрессии

Расположение точек на рис. 4.1 позволяет ограничиться классом линейных зависимостей вида

С помощью метода наименьших квадратов найдем оценкууравнения регрессии.

Для сравнения на рис. 4.1 приводятся графики истинной функции регрессиии теоретической аппроксимирующей функции регрессии. К последней сходится по вероятности оценка уравнения регрессии уы при неограниченном увеличении объема выборки ().

Поскольку мы вместо истинной функции регрессии ошибочно выбрали линейную функцию регрессии, что, к сожалению, достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки не будут обладать свойством состоятельности, т.е. так бы мы ни увеличивали объем наблюдений, наша выборочная оценкане будет сходиться к истинной функции регрессии

Если бы мы правильно выбрали класс функций регрессии, то неточность в описании с помощью уы объяснялась бы только ограниченностью выборки и, следовательно, она могла бы быть сделана сколько угодно малой при

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателяи неизвестной функции регрессии наиболее часто используют следующие критерии адекватности функции потерь .

1. Метод наименьших квадратов, согласно которому минимизируется квадрат отклонения наблюдаемых значений результативного показателя, , от модельных значений , где коэффициенты уравнения регрессии;– значения вектора аргументов в "-М наблюдении:

Решается задача отыскания оценкивектора. Получаемая регрессия называется средней квадратической.

2. Метод наименьших модулей , согласно которому минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений, т.е.

Получаемая регрессия называется среднеабсолютной (медианной).

3. Метод минимакса сводится к минимизации максимума модуля отклонения наблюдаемого значения результативного показателя у, от модельного значения, т.е.

Получаемая при этом регрессия называется минимаксной.

В практических приложениях часто встречаются задачи, в которых изучается случайная величина у, зависящая от некоторого множества переменныхи неизвестных параметров. Будем рассматривать () как (k + 1)-мерную генеральную совокупность, из которой взята случайная выборка объемом п, где () результат /-го наблюдения,. Требуется по результатам наблюдений оценить неизвестные параметры. Описанная выше задача относится к задачам регрессионного анализа.

Регрессионным анализом называют метод статистического анализа зависимости случайной величины у от переменных, рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них - уравнение регрессии - рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х - независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая - зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии - это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х 1 , х 2 ...х с)+E. В данной ситуации у выступает зависимой переменной, а х - объясняющей. Переменная Е - стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная - это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е - стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный - о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 - тем сильнее связь между параметрами, чем ближе к 0 - тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого - вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель - свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х - нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y - тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x 1 ,x 2 ,…,x m)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а 0 + a 1 х 1 + а 2 х 2 ,+ ... + a m x m . При этом а2, a m , считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах 1 b1 х 2 b2 ...x m bm . В данном случае показатели b 1 , b 2 ..... b m - называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям - система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий - отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной . Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка : сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ — раздел математической статистики и машинного обучения . Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины . Относительно характера распределения этой величины делаются предположения, называемые гипотезой порождения данных. Для подтверждения или опровержения этой гипотезы выполняются статистические тесты , называемые анализом остатков . При этом предполагается, что независимая переменная не содержит ошибок. Регрессионный анализ используется для прогноза , анализа временных рядов , тестирования гипотез и выявления скрытых взаимосвязей в данных.

Определение регрессионного анализа

Выборка может быть не функцией, а отношением. Например, данные для построения регрессии могут быть такими: . В такой выборке одному значению переменной соответствует несколько значений переменной .

Линейная регрессия

Линейная регрессия предполагает, что функция зависит от параметров линейно. При этом линейная зависимость от свободной переменной необязательна,

В случае, когда функция линейная регрессия имеет вид

здесь — компоненты вектора .

Значения параметров в случае линейной регрессии находят с помощью метода наименьших квадратов . Использование этого метода обосновано предположением о гауссовском распределении случайной переменной.

Разности между фактическими значениями зависимой переменной и восстановленными называются регрессионными остатками (residuals). В литературе используются также синонимы: невязки и ошибки . Одной из важных оценок критерия качества полученной зависимости является сумма квадратов остатков:

Здесь — Sum of Squared Errors.

Дисперсия остатков вычисляется по формуле

Здесь — Mean Square Error, среднеквадратичная ошибка.

На графиках представлены выборки, обозначенные синими точками, и регрессионные зависимости, обозначенные сплошными линиями. По оси абсцисс отложена свободная переменная, а по оси ординат — зависимая. Все три зависимости линейны относительно параметров.

Нелинейная регрессия

Нелинейные регрессионные модели - модели вида

которые не могут быть представлены в виде скалярного произведения

где - параметры регрессионной модели, - свободная переменная из пространства , - зависимая переменная, - случайная величина и - функция из некоторого заданного множества.

Значения параметров в случае нелинейной регрессии находят с помощью одного из методов градиентного спуска, например алгоритма Левенберга-Марквардта .

О терминах

Термин "регрессия" был введён Фрэнсисом Гальтоном в конце 19-го века. Гальтон обнаружил, что дети родителей с высоким или низким ростом обычно не наследуют выдающийся рост и назвал этот феномен "регрессия к посредственности". Сначала этот термин использовался исключительно в биологическом смысле. После работ Карла Пирсона этот термин стали использовать и в статистике.

В статистической литературе различают регрессию с участием одной свободной переменной и с несколькими свободными переменными — одномерную и многомерную регрессию. Предполагается, что мы используем несколько свободных переменных, то есть, свободная переменная — вектор . В частных случаях, когда свободная переменная является скаляром, она будет обозначаться . Различают линейную и нелинейную регрессию. Если регрессионную модель не является линейной комбинацией функций от параметров, то говорят о нелинейной регрессии. При этом модель может быть произвольной суперпозицией функций из некоторого набора. Нелинейными моделями являются, экспоненциальные, тригонометрические и другие (например, радиальные базисные функции или персептрон Розенблатта), полагающие зависимость между параметрами и зависимой переменной нелинейной.

Различают параметрическую и непараметрическую регрессию. Строгую границу между этими двумя типами регрессий провести сложно. Сейчас не существует общепринятого критерия отличия одного типа моделей от другого. Например, считается, что линейные модели являются параметрическими, а модели, включающие усреднение зависимой переменной по пространству свободной переменной —непараметрическими. Пример параметрической регресионной модели: линейный предиктор, многослойный персептрон. Примеры смешанной регрессионной модели: функции радиального базиса. Непараметрическая модель — скользящее усреднение в окне некоторой ширины. В целом, непараметрическая регрессия отличается от параметрической тем, что зависимая переменная зависит не от одного значения свободной переменной, а от некоторой заданной окрестности этого значения.

Есть различие между терминами: "приближение функций", "аппроксимация", "интерполяция", и "регрессия". Оно заключается в следующем.

Приближение функций. Дана функция дискретного или непрерывного аргумента. Требуется найти функцию из некоторого параметрическую семейства, например, среди алгебраических полиномов заданной степени. Параметры функции должны доставлять минимум некоторому функционалу, например,

Термин аппроксимация — синоним термина "приближение функций". Чаще используется тогда, когда речь идет о заданной функции, как о функции дискретного аргумента. Здесь также требуется отыскать такую функцию , которая проходит наиболее близко ко всем точкам заданной функции. При этом вводится понятие невязки — расстояния между точками непрерывной функции и соответствующими точками функции дискретного аргумента.

Интерполяция функций — частный случай задачи приближения, когда требуется, чтобы в определенных точках, называемых узлами интерполяции совпадали значения функции и приближающей ее функции . В более общем случае накладываются ограничения на значения некоторых производных производных. То есть, дана функция дискретного аргумента. Требуется отыскать такую функцию , которая проходит через все точки . При этом метрика обычно не используется, однако часто вводится понятие "гладкости" искомой функции.