Aritmetik ilerleme formülü. Aritmetik ilerleme: nedir bu? Öncekine benzer bir görev


Evet evet: aritmetik ilerleme sizin için bir oyuncak değil :)

Pekala arkadaşlar, eğer bu metni okuyorsanız, o zaman iç kanıt bana aritmetik ilerlemenin ne olduğunu henüz bilmediğinizi, ancak gerçekten (hayır, şöyle: Çooook!) bilmek istediğinizi söylüyor. Bu nedenle uzun tanıtımlarla sizi sıkmayacağım ve doğrudan konuya gireceğim.

Öncelikle birkaç örnek. Birkaç sayı kümesine bakalım:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Tüm bu setlerin ortak noktası nedir? İlk bakışta hiçbir şey yok. Ama aslında bir şey var. Yani: sonraki her öğe öncekinden aynı sayıda farklıdır.

Kendiniz karar verin. İlk küme, her biri bir öncekinden bir fazla olan ardışık sayılardan oluşur. İkinci durumda, bitişik sayılar arasındaki fark zaten beştir, ancak bu fark hala sabittir. Üçüncü durumda ise tamamen kökler vardır. Bununla birlikte, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ ve $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, yani. ve bu durumda, sonraki her öğe $\sqrt(2)$ kadar artar (ve bu sayının irrasyonel olduğundan korkmayın).

Yani: bu tür dizilerin tümüne aritmetik ilerlemeler denir. Kesin bir tanım verelim:

Tanım. Her birinin bir öncekinden tam olarak aynı miktarda farklı olduğu sayı dizisine aritmetik ilerleme denir. Sayıların farklı olduğu miktara ilerleme farkı denir ve çoğunlukla $d$ harfiyle gösterilir.

Gösterim: $\left(((a)_(n)) \right)$ ilerlemenin kendisidir, $d$ onun farkıdır.

Ve sadece birkaç önemli not. İlk olarak, ilerleme yalnızca dikkate alınır sipariş edildi sayıların sırası: kesinlikle yazıldıkları sıraya göre okunmalarına izin verilir - başka hiçbir şeye izin verilmez. Sayılar yeniden düzenlenemez veya değiştirilemez.

İkincisi, dizinin kendisi sonlu veya sonsuz olabilir. Örneğin (1; 2; 3) kümesinin sonlu bir aritmetik ilerleme olduğu açıktır. Ancak (1; 2; 3; 4; ...) ruhuyla bir şey yazarsanız, bu zaten sonsuz bir ilerlemedir. Dörtten sonraki üç nokta, daha pek çok sayının geleceğini ima ediyor gibi görünüyor. Mesela sonsuz sayıda :)

İlerlemelerin artabileceğini veya azalabileceğini de belirtmek isterim. Artanları zaten gördük - aynı küme (1; 2; 3; 4; ...). İşte azalan ilerlemelerin örnekleri:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Tamam tamam: son örnek aşırı karmaşık görünebilir. Ama gerisini sanırım anlıyorsunuz. Bu nedenle yeni tanımlar sunuyoruz:

Tanım. Aritmetik ilerleme isminde:

  1. her bir sonraki öğe bir öncekinden büyükse artar;
  2. aksine, sonraki her öğe bir öncekinden daha azsa azalır.

Ek olarak, "durağan" diziler de vardır - bunlar aynı tekrar eden sayıdan oluşur. Örneğin, (3; 3; 3; ...).

Geriye tek bir soru kalıyor: Artan ilerlemeyi azalan ilerlemeden nasıl ayırt edebiliriz? Neyse ki, buradaki her şey yalnızca $d$ sayısının işaretine bağlıdır, yani. ilerleme farklılıkları:

  1. $d \gt 0$ ise ilerleme artar;
  2. Eğer $d \lt 0$ ise ilerleme açıkça azalıyor demektir;
  3. Son olarak, $d=0$ durumu vardır - bu durumda tüm ilerleme aynı sayıların sabit bir dizisine indirgenir: (1; 1; 1; 1; ...), vb.

Yukarıda verilen üç azalan ilerleme için $d$ farkını hesaplamaya çalışalım. Bunu yapmak için herhangi iki bitişik öğeyi (örneğin birinci ve ikinci) alıp soldaki sayıyı sağdaki sayıdan çıkarmak yeterlidir. Şunun gibi görünecek:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Gördüğümüz gibi her üç durumda da fark aslında negatif çıktı. Artık tanımları az çok anladığımıza göre, ilerlemelerin nasıl tanımlandığını ve hangi özelliklere sahip olduğunu anlamanın zamanı geldi.

İlerleme terimleri ve yineleme formülü

Dizilerimizin elemanları değiştirilemediği için numaralandırılabilirler:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \Sağ\)\]

Bu kümenin bireysel elemanlarına bir ilerlemenin üyeleri denir. Bir sayıyla belirtilirler: birinci üye, ikinci üye vb.

Ek olarak, zaten bildiğimiz gibi, ilerlemenin komşu terimleri aşağıdaki formülle ilişkilidir:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Kısacası, bir ilerlemenin $n$th terimini bulmak için $n-1$th terimini ve $d$ farkını bilmeniz gerekir. Bu formüle yinelenen denir, çünkü onun yardımıyla herhangi bir sayıyı yalnızca öncekini (ve aslında öncekilerin tümünü) bilerek bulabilirsiniz. Bu çok sakıncalıdır, bu nedenle hesaplamaları ilk terime ve farka indirgeyen daha kurnaz bir formül vardır:

\[(((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Muhtemelen bu formülle zaten karşılaşmışsınızdır. Her türlü referans kitaplarında ve çözüm kitaplarında bunu vermekten hoşlanıyorlar. Ve herhangi bir mantıklı matematik ders kitabında ilklerden biridir.

Ancak biraz pratik yapmanızı öneririm.

Görev No.1. Aritmetik ilerlemenin ilk üç terimini $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$ yazın.

Çözüm. Yani, ilk terimi $((a)_(1))=8$ ve $d=-5$ ilerlemesinin farkını biliyoruz. Az önce verilen formülü kullanalım ve $n=1$, $n=2$ ve $n=3$ yerine koyalım:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(hizala)\]

Cevap: (8; 3; −2)

İşte bu! Lütfen dikkat: ilerlememiz azalıyor.

Elbette $n=1$ yerine başka bir şey konulamaz; ilk terim bizim tarafımızdan zaten bilinmektedir. Ancak birliği yerine koyarak formülümüzün ilk terim için bile işe yaradığına ikna olduk. Diğer durumlarda her şey banal aritmetiğe indirgendi.

Görev No.2. Bir aritmetik dizinin yedinci terimi -40'a ve on yedinci terimi -50'ye eşitse ilk üç terimini yazın.

Çözüm. Sorunun durumunu tanıdık terimlerle yazalım:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \Sağ.\]

Bu gereksinimlerin aynı anda karşılanması gerektiği için sistem işaretini koydum. Şimdi şunu belirtelim ki ikinci denklemden birinciyi çıkarırsak (sistemimiz olduğu için bunu yapmaya hakkımız var) şunu elde ederiz:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(hizala)\]

İlerleme farkını bulmak işte bu kadar kolay! Geriye kalan tek şey, bulunan sayıyı sistemdeki denklemlerden herhangi birine koymaktır. Örneğin, ilkinde:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matris)\]

Şimdi, ilk terimi ve farkı bildiğimize göre, ikinci ve üçüncü terimleri bulmaya devam ediyoruz:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(hizala)\]

Hazır! Sorun çözüldü.

Cevap: (−34; −35; −36)

İlerlemeyle ilgili keşfettiğimiz ilginç özelliğe dikkat edin: $n$th ve $m$th terimlerini alıp bunları birbirinden çıkarırsak, ilerlemenin farkını $n-m$ sayısıyla çarparak elde ederiz:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Kesinlikle bilmeniz gereken basit ama çok kullanışlı bir özellik - onun yardımıyla birçok ilerleme sorununun çözümünü önemli ölçüde hızlandırabilirsiniz. İşte bunun açık bir örneği:

Görev No.3. Bir aritmetik ilerlemenin beşinci terimi 8,4, onuncu terimi ise 14,4'tür. Bu ilerlemenin on beşinci terimini bulun.

Çözüm. $((a)_(5))=8.4$, $((a)_(10))=14.4$ ve $((a)_(15))$'ı bulmamız gerektiğinden, şunu not ediyoruz:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(hizala)\]

Ancak $((a)_(10))-((a)_(5))=14.4-8.4=6$ koşuluna göre, dolayısıyla $5d=6$, bundan şunu elde ederiz:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(hizala)\]

Cevap: 20.4

İşte bu! Herhangi bir denklem sistemi oluşturmamıza ve ilk terimi ve farkı hesaplamamıza gerek yoktu; her şey sadece birkaç satırda çözüldü.

Şimdi başka bir problem türüne bakalım: ilerlemenin negatif ve pozitif terimlerini bulmaya. Bir ilerleme artarsa ​​ve ilk terimi negatifse, er ya da geç olumlu terimlerin içinde görüneceği bir sır değildir. Ve bunun tersi de geçerlidir: azalan ilerlemenin koşulları er ya da geç olumsuz hale gelecektir.

Aynı zamanda unsurları sırayla geçerek bu anı “kafa kafaya” bulmak her zaman mümkün olmuyor. Çoğu zaman problemler öyle bir şekilde yazılır ki formülleri bilmeden hesaplamalar birkaç sayfa kağıt alır; biz cevabı bulurken uykuya dalarız. Bu nedenle bu sorunları daha hızlı çözmeye çalışalım.

Görev No.4. Aritmetik ilerlemede kaç tane negatif terim var −38,5; −35,8; ...?

Çözüm. Yani, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, buradan farkı hemen buluruz:

Farkın pozitif olduğunu, dolayısıyla ilerlemenin arttığını unutmayın. İlk terim negatiftir, dolayısıyla bir noktada pozitif sayılara rastlayacağız. Tek soru bunun ne zaman olacağıdır.

Terimlerin olumsuzluğunun ne kadar süreyle (yani hangi $n$ doğal sayısına kadar) kaldığını bulmaya çalışalım:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \sağ. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(hizala)\]

Son satır biraz açıklama gerektiriyor. Yani $n \lt 15\frac(7)(27)$ olduğunu biliyoruz. Öte yandan, sayının yalnızca tamsayı değerleriyle yetiniyoruz (ayrıca: $n\in \mathbb(N)$), dolayısıyla izin verilen en büyük sayı tam olarak $n=15$'dır ve hiçbir durumda 16 değildir. .

Görev No.5. Aritmetik ilerlemede $(()_(5))=-150,(()_(6))=-147$. Bu ilerlemenin ilk pozitif teriminin sayısını bulun.

Bu, bir öncekiyle tamamen aynı problem olacaktır, ancak $((a)_(1))$'ı bilmiyoruz. Ancak komşu terimler biliniyor: $((a)_(5))$ ve $((a)_(6))$, böylece ilerlemenin farkını kolayca bulabiliriz:

Ayrıca standart formülü kullanarak beşinci terimi birinci ve fark üzerinden ifade etmeye çalışalım:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(hizala)\]

Şimdi önceki göreve benzeterek ilerliyoruz. Pozitif sayıların dizimizin hangi noktasında görüneceğini öğrenelim:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(hizala)\]

Bu eşitsizliğin minimum tamsayı çözümü 56 sayısıdır.

Lütfen unutmayın: son görevde her şey katı eşitsizlik yani $n=55$ seçeneği bize uymayacaktır.

Artık basit problemleri nasıl çözeceğimizi öğrendiğimize göre, daha karmaşık problemlere geçelim. Ama önce, aritmetik ilerlemelerin bize çok fazla zaman kazandıracak ve gelecekte eşit olmayan hücrelere sahip olmamızı sağlayacak çok yararlı başka bir özelliğini inceleyelim. :)

Aritmetik ortalama ve eşit girintiler

Artan aritmetik ilerlemenin birkaç ardışık terimini ele alalım $\left(((a)_(n)) \right)$. Bunları sayı doğrusunda işaretlemeye çalışalım:

Sayı doğrusunda aritmetik ilerlemenin terimleri

Özellikle $((a)_(n-3))),...,((a)_(n+3))$ gibi rastgele terimleri işaretledim, $((a)_(1)) ,\'yi değil. ((a)_(2))),\ ((a)_(3))$, vb. Çünkü şimdi anlatacağım kural her “segment” için aynı şekilde işliyor.

Ve kural çok basit. Tekrarlanan formülü hatırlayalım ve işaretli tüm terimler için yazalım:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(hizala)\]

Ancak bu eşitlikler farklı şekilde yeniden yazılabilir:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(hizala)\]

Ne olmuş? Ve $((a)_(n-1))$ ve $((a)_(n+1))$ terimlerinin $((a)_(n)) $'dan aynı uzaklıkta olması . Ve bu mesafe $d$'a eşittir. Aynı şey $((a)_(n-2))$ ve $((a)_(n+2))$ terimleri için de söylenebilir - bunlar aynı zamanda $((a)_(n) öğesinden de kaldırılmıştır. )$ aynı mesafede $2d$'a eşittir. Sonsuza kadar devam edebiliriz, ancak anlam resimde çok iyi gösterilmiştir.


İlerleme koşulları merkezden aynı uzaklıkta yer alır

Bu bizim için ne anlama geliyor? Bu, eğer komşu sayılar biliniyorsa $((a)_(n))$ öğesinin bulunabileceği anlamına gelir:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1))))(2)\]

Mükemmel bir ifade elde ettik: Bir aritmetik ilerlemenin her terimi, komşu terimlerin aritmetik ortalamasına eşittir! Üstelik: $((a)_(n))$'dan sola ve sağa bir adım değil, $k$ adımlarla geri adım atabiliriz - ve formül yine de doğru olacaktır:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k))))(2)\]

Onlar. $((a)_(100))$ ve $((a)_(200))$$'ı biliyorsak kolayca $((a)_(150))$ bulabiliriz, çünkü $(( a)_ (150))=\frac(((a)_(100))+((a)_(200))))(2)$. İlk bakışta bu gerçeğin bize hiçbir faydası yokmuş gibi görünebilir. Ancak pratikte birçok problem aritmetik ortalamayı kullanacak şekilde özel olarak uyarlanmıştır. Bir göz atın:

Görev No. 6. $-6((x)^(2))$, $x+1$ ve $14+4((x)^(2))$ sayılarının ardışık terimler olduğu tüm $x$ değerlerini bulun. aritmetik ilerleme (belirtilen sıraya göre).

Çözüm. Bu sayılar bir ilerlemenin üyeleri olduğundan, aritmetik ortalama koşulu onlar için karşılanmıştır: merkezi öğe $x+1$ komşu öğeler cinsinden ifade edilebilir:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2))))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(hizala)\]

Sonuç klasik ikinci dereceden bir denklemdir. Kökleri: $x=2$ ve $x=-3$ yanıtlardır.

Cevap: −3; 2.

Görev No.7. $-1;4-3;(()^(2))+1$ sayılarının aritmetik bir ilerleme oluşturduğu (bu sırayla) $$ değerlerini bulun.

Çözüm. Ortadaki terimi yine komşu terimlerin aritmetik ortalaması üzerinden ifade edelim:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \sağ.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(hizala)\]

Tekrar ikinci dereceden denklem. Ve yine iki kök var: $x=6$ ve $x=1$.

Cevap: 1; 6.

Bir sorunu çözme sürecinde bazı acımasız rakamlarla karşılaşırsanız veya bulunan cevapların doğruluğundan tam olarak emin değilseniz, o zaman kontrol etmenizi sağlayan harika bir teknik var: sorunu doğru çözdük mü?

Diyelim ki 6 numaralı problemde -3 ve 2 cevaplarını aldık. Bu cevapların doğru olduğunu nasıl kontrol edebiliriz? Bunları orijinal durumuna takalım ve ne olacağını görelim. Bir aritmetik ilerleme oluşturması gereken üç sayımız ($-6(()^(2))$, $+1$ ve $14+4(()^(2))$) olduğunu hatırlatmama izin verin. $x=-3$ yerine koyalım:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(hizala)\]

−54 sayısını aldık; −2; Farkı 52 olan 50 sayısı şüphesiz bir aritmetik ilerlemedir. Aynı şey $x=2$ için de olur:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(hizala)\]

Yine ilerleme oldu ama 27'lik bir farkla. Böylece sorun doğru bir şekilde çözüldü. İsteyen ikinci sorunu kendi başına kontrol edebilir ama hemen söyleyeyim: orada da her şey doğru.

Genel olarak son problemleri çözerken başka bir şeyle karşılaştık ilginç gerçekşunu da unutmamak lazım:

Eğer üç sayı ikincisi ortada olacak şekilde ise önce aritmetik ve son olarak bu sayılar aritmetik bir ilerleme oluşturur.

Gelecekte bu ifadeyi anlamak, sorunun koşullarına dayalı olarak gerekli ilerlemeleri kelimenin tam anlamıyla "inşa etmemize" olanak tanıyacaktır. Ancak böyle bir "inşaa" girişmeden önce, daha önce tartışılanlardan doğrudan çıkan bir gerçeğe daha dikkat etmeliyiz.

Öğeleri gruplama ve toplama

Tekrar sayı eksenine dönelim. Burada ilerlemenin birkaç üyesini not edelim, belki bunlar arasında. diğer birçok üyeye değer:

Sayı doğrusunda 6 eleman işaretlenmiştir

“Sol kuyruğu” $((a)_(n))$ ve $d$ aracılığıyla, “sağ kuyruğu” ise $((a)_(k))$ ve $d$ aracılığıyla ifade etmeye çalışalım. Çok basit:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(hizala)\]

Şimdi aşağıdaki miktarların eşit olduğunu unutmayın:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(hizala)\]

Basitçe söylemek gerekirse, ilerlemenin toplamda $S$ sayısına eşit olan iki unsurunu başlangıç ​​olarak düşünürsek ve sonra bu unsurlardan zıt yönlerde (birbirine doğru veya tam tersi uzaklaşmak için) adım atmaya başlarsak, Daha sonra rastlayacağımız elementlerin toplamları da eşit olacak$S$. Bu en açık şekilde grafiksel olarak gösterilebilir:


Eşit girintiler eşit miktarlar verir

Bu gerçeği anlamak, yukarıda düşündüklerimizden temelde daha yüksek düzeyde karmaşıklığa sahip sorunları çözmemize olanak sağlayacaktır. Örneğin, bunlar:

Görev No. 8. İlk terimi 66 olan ve ikinci ve onikinci terimlerin çarpımının mümkün olan en küçük olduğu aritmetik ilerlemenin farkını belirleyin.

Çözüm. Bildiğimiz her şeyi yazalım:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(hizala)\]

Yani $d$ ilerleme farkını bilmiyoruz. Aslında, $((a)_(2))\cdot ((a)_(12))$ çarpımı aşağıdaki gibi yeniden yazılabileceğinden, çözümün tamamı fark etrafında oluşturulacaktır:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(hizala)\]

Tanktakiler için: İkinci gruptan toplam 11 çarpanını çıkardım. Dolayısıyla gerekli çarpım $d$ değişkenine göre ikinci dereceden bir fonksiyondur. Bu nedenle, $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ fonksiyonunu düşünün - grafiği, dalları yukarıya doğru olan bir parabol olacaktır, çünkü parantezleri genişletirsek şunu elde ederiz:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Gördüğünüz gibi en yüksek terimin katsayısı 11'dir - bu pozitif bir sayıdır, yani aslında yukarı doğru dalları olan bir parabolle uğraşıyoruz:


takvim ikinci dereceden fonksiyon- parabol

Lütfen unutmayın: Bu parabol minimum değerini tepe noktasında $((d)_(0))$ $((d)_(0))$ ile alır. Elbette, bu apsisi standart şemayı kullanarak hesaplayabiliriz ($((d)_(0))=(-b)/(2a)\;$ formülü vardır), ancak bunu not etmek çok daha mantıklı olacaktır. istenen tepe noktası parabolün eksen simetrisi üzerinde yer alır, bu nedenle $((d)_(0))$ noktası $f\left(d \right)=0$ denkleminin köklerinden eşit uzaklıktadır:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(hizala)\]

Bu yüzden parantezleri açmak için özel bir acelem yoktu: orijinal hallerinde kökleri bulmak çok çok kolaydı. Bu nedenle apsis ortalamaya eşittir aritmetik sayılar−66 ve −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Keşfedilen sayı bize ne veriyor? Bununla birlikte gerekli ürün alınır en küçük değer(bu arada $((y)_(\min ))$'ı asla hesaplamadık - bu bizim için gerekli değil). Aynı zamanda bu sayı orijinal ilerlemenin farkıdır, yani. Cevabı bulduk :)

Cevap: −36

Görev No.9. $-\frac(1)(2)$ ve $-\frac(1)(6)$ sayıları arasına üç sayı ekleyin, böylece bu sayılarla birlikte bir aritmetik ilerleme oluştursunlar.

Çözüm. Temel olarak, ilk ve son sayı zaten bilinen beş sayıdan oluşan bir dizi oluşturmamız gerekiyor. Eksik sayıları $x$, $y$ ve $z$ değişkenleriyle gösterelim:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

$y$ sayısının dizimizin "ortası" olduğuna dikkat edin - $x$ ve $z$ sayılarından ve $-\frac(1)(2)$ ve $-\frac sayılarından eşit uzaklıkta (1)(6)$. Ve şu anda $x$ ve $z$ sayılarından $y$ elde edemiyorsak, ilerlemenin sonlarında durum farklıdır. Aritmetik ortalamayı hatırlayalım:

Şimdi $y$'ı bildiğimize göre kalan sayıları bulacağız. $x$'ın az önce bulduğumuz $-\frac(1)(2)$ ve $y=-\frac(1)(3)$ sayıları arasında yer aldığını unutmayın. Bu yüzden

Benzer akıl yürütmeyi kullanarak kalan sayıyı buluruz:

Hazır! Üç sayıyı da bulduk. Bunları orijinal sayıların arasına yerleştirilmesi gereken sırayla cevapta yazalım.

Cevap: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Görev No. 10. 2 ile 42 sayıları arasına, eklenen sayıların birinci, ikinci ve sonuncusunun toplamının 56 olduğunu biliyorsanız, bu sayılarla birlikte aritmetik bir ilerleme oluşturan birkaç sayı ekleyin.

Çözüm. Bununla birlikte, öncekilerle aynı şemaya göre aritmetik ortalama yoluyla çözülen daha da karmaşık bir problem. Sorun şu ki, kaç sayının eklenmesi gerektiğini tam olarak bilmiyoruz. Bu nedenle, kesin olarak, her şeyi yerleştirdikten sonra tam olarak $n$ sayıların olacağını ve bunların ilkinin 2 ve sonuncusunun 42 olduğunu varsayalım. Bu durumda gerekli aritmetik ilerleme şu şekilde gösterilebilir:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \sağ\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Ancak $((a)_(2))$ ve $((a)_(n-1))$ sayılarının kenarlardaki 2 ve 42 sayılarından birbirine bir adım yaklaşarak elde edildiğini unutmayın, yani. dizinin merkezine. Ve bu şu anlama geliyor

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ancak bu durumda yukarıda yazılan ifade şu şekilde yeniden yazılabilir:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(hizala)\]

$((a)_(3))$ ve $((a)_(1))$'ı bildiğimiz için ilerlemenin farkını kolayca bulabiliriz:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Sağ ok d=5. \\ \end(hizala)\]

Geriye kalan tek şey kalan terimleri bulmak:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(hizala)\]

Böylece, zaten 9. adımda dizinin sol ucuna ulaşacağız - 42 sayısı. Toplamda yalnızca 7 sayının eklenmesi gerekiyordu: 7; 12; 17; 22; 27; 32; 37.

Cevap: 7; 12; 17; 22; 27; 32; 37

İlerlemelerle ilgili kelime problemleri

Sonuç olarak, nispeten basit birkaç sorunu ele almak istiyorum. Bu kadar basit: Okulda matematik eğitimi alan ve yukarıda yazılanları okumayan çoğu öğrenci için bu problemler zor görünebilir. Yine de bunlar matematikte OGE ve Birleşik Devlet Sınavında ortaya çıkan problem türleridir, bu yüzden bunlara aşina olmanızı öneririm.

Görev No.11. Ekip Ocak ayında 62 parça üretti ve sonraki her ayda bir önceki aya göre 14 parça daha fazla üretti. Ekip Kasım ayında kaç parça üretti?

Çözüm. Açıkçası, aya göre listelenen parça sayısı artan bir aritmetik ilerlemeyi temsil edecektir. Dahası:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Kasım yılın 11. ayı olduğundan $((a)_(11))$ bulmamız gerekiyor:

\[((a)_(11))=62+10\cdot 14=202\]

Dolayısıyla kasım ayında 202 parça üretilecek.

Görev No. 12. Ciltleme atölyesi Ocak ayında 216 kitap ciltledi ve sonraki her ayda bir öncekine göre 4 kitap daha ciltledi. Atölye Aralık ayında kaç kitap ciltledi?

Çözüm. Her şey aynı:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Aralık yılın son 12. ayı olduğundan $((a)_(12))$ ifadesini arıyoruz:

\[((a)_(12))=216+11\cdot 4=260\]

Cevap bu: Aralık ayında 260 kitap ciltlenecek.

Buraya kadar okuduysanız sizi tebrik etmek için acele ediyorum: aritmetik ilerlemelerde "genç dövüşçü kursunu" başarıyla tamamladınız. İlerleme toplamı formülünü ve bunun önemli ve çok faydalı sonuçlarını inceleyeceğimiz bir sonraki derse güvenle geçebilirsiniz.

Birçok kişi aritmetik ilerlemeyi duymuştur, ancak herkes bunun ne olduğu konusunda iyi bir fikre sahip değildir. Bu makalede ilgili tanımı vereceğiz ve ayrıca bir aritmetik ilerlemenin farkının nasıl bulunacağı sorusunu ele alacağız ve bir dizi örnek vereceğiz.

Matematiksel tanım

Dolayısıyla, eğer aritmetik veya cebirsel ilerlemeden bahsediyorsak (bu kavramlar aynı şeyi tanımlar), o zaman bu bazı şeylerin olduğu anlamına gelir. sayı serisi, aşağıdaki yasayı karşılar: Bir serideki her iki bitişik sayı aynı değerde farklılık gösterir. Matematiksel olarak şöyle yazılır:

Burada n, dizideki a n öğesinin sayısı anlamına gelir ve d sayısı ilerlemenin farkıdır (adı sunulan formülden gelir).

Farkı bilmek ne anlama geliyor? Komşu sayıların birbirinden ne kadar "uzak" olduğu hakkında. Bununla birlikte, d'nin bilgisi tüm ilerlemeyi belirlemek (geri yüklemek) için gerekli ancak yeterli olmayan bir koşuldur. Söz konusu serinin kesinlikle herhangi bir öğesi olabilecek bir sayı daha bilmeniz gerekir, örneğin 4, a10, ancak kural olarak ilk sayı, yani 1 kullanılır.

İlerleme öğelerini belirlemek için formüller

Genel olarak yukarıdaki bilgiler belirli sorunların çözümüne geçmek için zaten yeterlidir. Bununla birlikte, aritmetik ilerleme verilmeden önce ve bunun farkını bulmak gerekli olacak, birkaç yararlı formül sunacağız, böylece sonraki problem çözme sürecini kolaylaştıracağız.

N numaralı dizinin herhangi bir elemanının aşağıdaki şekilde bulunabileceğini göstermek kolaydır:

bir n = bir 1 + (n - 1) * d

Aslında herkes bu formülü basit bir aramayla kontrol edebilir: n = 1 yerine koyarsanız ilk öğeyi alırsınız, n = 2 yerine koyarsanız ifade ilk sayının toplamını ve farkı verir, vb.

Pek çok problemin koşulları öyle bir şekilde oluşturulmuştur ki, sayıları da sırayla verilen bilinen bir sayı çifti verildiğinde, tüm sayı serisinin yeniden yapılandırılması (farkın ve ilk elemanın bulunması) gerekli olacaktır. Şimdi bu sorunu çözeceğiz genel görünüm.

O halde sayıları n ve m olan iki eleman verilsin. Yukarıda elde edilen formülü kullanarak iki denklemden oluşan bir sistem oluşturabilirsiniz:

a n = a 1 + (n - 1) * d;

a m = a 1 + (m - 1) * d

Bilinmeyen miktarları bulmak için, böyle bir sistemi çözmek için iyi bilinen basit bir teknik kullanacağız: çiftler halinde sol ve sağ tarafları çıkarın, eşitlik geçerli kalacaktır. Sahibiz:

a n = a 1 + (n - 1) * d;

bir n - bir m = (n - 1) * d - (m - 1) * d = d * (n - m)

Böylece bir bilinmeyeni (a 1) hariç tuttuk. Artık d'yi belirlemek için son ifadeyi yazabiliriz:

d = (a n - a m) / (n - m), burada n > m

Çok basit bir formül aldık: Sorunun koşullarına göre d farkını hesaplamak için, yalnızca elemanların kendileri arasındaki farkların oranını ve seri numaralarını almak gerekir. Önemli bir noktaya dikkat edilmelidir: “kıdemli” ve “kıdemsiz” üyeler arasındaki farklar alınır, yani n > m (“kıdemli” dizinin başlangıcından daha uzakta durmak anlamına gelir, mutlak değeri şu şekilde olabilir: az ya da çok "küçük" unsur).

İlk terimin değerini elde etmek için, problemin çözümünün başında fark d ilerlemesi ifadesi herhangi bir denklemin yerine konulmalıdır.

Bilgisayar teknolojisinin geliştiği çağımızda, pek çok okul çocuğu ödevlerine internette çözüm bulmaya çalışıyor, bu nedenle bu tür sorular sıklıkla ortaya çıkıyor: aritmetik ilerlemenin farkını çevrimiçi olarak bulun. Böyle bir talep için, arama motoru, durumdan bilinen verileri girmeniz gereken bir dizi web sayfasını döndürecektir (bu, ilerlemenin iki terimi veya belirli bir sayısının toplamı olabilir) ) ve anında bir cevap alın. Bununla birlikte, problemi çözmeye yönelik bu yaklaşım, öğrencinin gelişimi ve kendisine verilen görevin özünü anlaması açısından verimsizdir.

Formül kullanmadan çözüm

Verilen formüllerden hiçbirini kullanmadan ilk problemi çözelim. Serinin elemanları verilsin: a6 = 3, a9 = 18. Aritmetik ilerlemenin farkını bulun.

Bilinen unsurlar üst üste birbirine yakın durmaktadır. En büyüğü elde etmek için d farkının en küçüğüne kaç kez eklenmesi gerekir? Üç kez (ilk kez d'yi eklediğimizde 7. elementi elde ederiz, ikinci kez - sekizinci, son olarak üçüncü kez - dokuzuncu). 18 elde etmek için üçe üç kez hangi sayı eklenmelidir? Bu beş numara. Gerçekten mi:

Böylece bilinmeyen fark d = 5 olur.

Elbette uygun formül kullanılarak çözüm gerçekleştirilebilirdi ancak bu kasıtlı olarak yapılmadı. Sorunun çözümünün ayrıntılı bir açıklaması, aritmetik ilerlemenin ne olduğuna dair açık ve net bir örnek olmalıdır.

Öncekine benzer bir görev

Şimdi benzer bir sorunu çözelim ancak giriş verilerini değiştirelim. Yani a3 = 2, a9 = 19 ise bulmalısınız.

Elbette yine “kafa kafaya” çözüm yöntemine başvurabilirsiniz. Ancak serinin birbirinden nispeten uzak olan elemanları verildiğinden bu yöntem tam olarak uygun olmayacaktır. Ancak ortaya çıkan formülü kullanmak bizi hızla cevaba götürecektir:

d = (a 9 - a 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2,83

Burada son sayıyı yuvarladık. Bu yuvarlamanın ne ölçüde hataya yol açtığı, elde edilen sonucun kontrol edilmesiyle değerlendirilebilir:

a 9 = a 3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Bu sonuç, koşulda verilen değerden yalnızca %0,1 farklıdır. Bu nedenle en yakın yüzlüğe yuvarlamanın başarılı bir seçim olduğu düşünülebilir.

Bir terim için formülün uygulanmasıyla ilgili sorunlar

Bilinmeyen d'yi belirlemeye yönelik klasik bir problem örneğini ele alalım: a1 = 12, a5 = 40 ise aritmetik ilerlemenin farkını bulun.

Bilinmeyen bir cebirsel dizinin iki sayısı verildiğinde ve bunlardan biri a 1 elemanıysa, o zaman uzun süre düşünmenize gerek yoktur, ancak a n terimi için formülü hemen uygulamanız gerekir. Bu durumda elimizde:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

Bölme sırasında tam sayıyı aldık, bu nedenle önceki paragrafta yapıldığı gibi hesaplanan sonucun doğruluğunu kontrol etmenin bir anlamı yok.

Benzer bir problemi daha çözelim: a1 = 16, a8 = 37 ise aritmetik ilerlemenin farkını bulmamız gerekiyor.

Öncekine benzer bir yaklaşım kullanıyoruz ve şunu elde ediyoruz:

a 8 = a 1 + d * (8 - 1) => d = (a 8 - a 1) / 7 = (37 - 16) / 7 = 3

Aritmetik ilerleme hakkında başka ne bilmelisiniz?

Bilinmeyen bir farkın veya bireysel elemanların bulunması problemlerine ek olarak, genellikle bir dizinin ilk terimlerinin toplamı problemlerinin çözülmesi de gereklidir. Ancak sunduğumuz bilgilerin eksiksizliği nedeniyle bu görevlerin dikkate alınması makalenin kapsamı dışındadır. genel formül bir serideki n sayının toplamı için:

∑ n ben = 1 (a ben) = n * (a 1 + a n) / 2

Cebir okurken ortaokul(9. sınıf) önemli konulardan biri geometrik ve aritmetik ilerlemeleri içeren sayı dizilerinin incelenmesidir. Bu yazıda aritmetik ilerlemeye ve çözümlü örneklere bakacağız.

Aritmetik ilerleme nedir?

Bunu anlamak için hem söz konusu ilerlemeyi tanımlamak hem de daha sonra problemlerin çözümünde kullanılacak temel formülleri sağlamak gerekir.

Aritmetik veya cebirsel ilerleme, her bir terimi bir öncekinden sabit bir değerle farklı olan bir dizi sıralı rasyonel sayıdır. Bu değere fark denir. Yani, sıralı bir sayı serisinin herhangi bir üyesini ve farkı bilerek, tüm aritmetik ilerlemeyi geri yükleyebilirsiniz.

Bir örnek verelim. Aşağıdaki sayı dizisi aritmetik bir ilerleme olacaktır: 4, 8, 12, 16, ..., çünkü bu durumda fark 4'tür (8 - 4 = 12 - 8 = 16 - 12). Ancak 3, 5, 8, 12, 17 sayı kümesi artık söz konusu ilerleme türüne atfedilemez, çünkü bunun farkı sabit bir değer değildir (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Önemli Formüller

Şimdi aritmetik ilerlemeyi kullanarak problemleri çözmek için ihtiyaç duyacağımız temel formülleri sunalım. a n sembolüyle gösterelim n'inci terim n'nin bir tam sayı olduğu diziler. Farkı Latin harfi d ile belirtiyoruz. O halde aşağıdaki ifadeler geçerlidir:

  1. N'inci terimin değerini belirlemek için aşağıdaki formül uygundur: a n = (n-1)*d+a 1 .
  2. İlk n terimin toplamını belirlemek için: S n = (a n +a 1)*n/2.

9. sınıftaki çözümlerle ilgili herhangi bir aritmetik ilerleme örneğini anlamak için, bu iki formülü hatırlamak yeterlidir, çünkü söz konusu türdeki herhangi bir problem bunların kullanımına dayanmaktadır. İlerleme farkının şu formülle belirlendiğini de unutmamalısınız: d = a n - a n-1.

Örnek 1: Bilinmeyen bir terimi bulma

Aritmetik ilerlemeye ve onu çözmek için kullanılması gereken formüllere basit bir örnek verelim.

10, 8, 6, 4, ... dizisi verilsin, içinde beş terim bulmanız gerekiyor.

Problemin koşullarından ilk 4 terimin zaten bilindiği sonucu çıkıyor. Beşincisi iki şekilde tanımlanabilir:

  1. Önce farkı hesaplayalım. Elimizde: d = 8 - 10 = -2. Benzer şekilde, yan yana duran herhangi iki üyeyi de alabilirsiniz. Örneğin d = 4 - 6 = -2. D = a n - a n-1 olduğu bilindiğinden, d = a 5 - a 4 olur ve bundan şunu elde ederiz: a 5 = a 4 + d. Bilinen değerleri yerine koyarız: a 5 = 4 + (-2) = 2.
  2. İkinci yöntem de söz konusu ilerlemenin farkının bilinmesini gerektirir, bu nedenle öncelikle bunu yukarıda gösterildiği gibi belirlemeniz gerekir (d = -2). İlk terimin a 1 = 10 olduğunu bilerek dizinin n sayısı için formülü kullanıyoruz. Elimizde: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Son ifadede n = 5'i yerine koyarsak şunu elde ederiz: a 5 = 12-2 * 5 = 2.

Gördüğünüz gibi her iki çözüm de aynı sonuca yol açtı. Bu örnekte ilerleme farkı d'nin negatif bir değer olduğuna dikkat edin. Bu tür dizilere azalan diziler denir, çünkü sonraki her terim bir öncekinden daha küçüktür.

Örnek #2: ilerleme farkı

Şimdi görevi biraz karmaşıklaştıralım, nasıl yapıldığına dair bir örnek verelim

Bazılarında 1. terimin 6'ya, 7. terimin ise 18'e eşit olduğu bilinmektedir. Farkı bulup bu diziyi 7. terime geri döndürmek gerekir.

Bilinmeyen terimi belirlemek için şu formülü kullanalım: a n = (n - 1) * d + a 1 . Koşuldan bilinen verileri, yani a 1 ve a 7 sayılarını yerine koyalım: 18 = 6 + 6 * d. Bu ifadeden farkı kolayca hesaplayabilirsiniz: d = (18 - 6) /6 = 2. Böylece problemin ilk kısmını cevaplamış olduk.

Diziyi 7. terime geri döndürmek için cebirsel ilerlemenin tanımını kullanmalısınız, yani a 2 = a 1 + d, a 3 = a 2 + d vb. Sonuç olarak tüm diziyi geri yükleriz: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

Örnek No. 3: bir ilerlemenin hazırlanması

Sorunu daha da karmaşık hale getirelim. Şimdi aritmetik ilerlemenin nasıl bulunacağı sorusunu cevaplamamız gerekiyor. Şu örneği verebiliriz: İki sayı veriliyor örneğin - 4 ve 5. Bunların arasına üç terim daha yerleştirilecek şekilde cebirsel bir ilerleme oluşturmak gerekiyor.

Bu sorunu çözmeye başlamadan önce, verilen sayıların gelecekteki ilerlemede nasıl bir yer tutacağını anlamalısınız. Aralarında üç terim daha olacağı için a 1 = -4 ve a 5 = 5 olur. Bunu belirledikten sonra bir öncekine benzer probleme geçiyoruz. Yine formülü kullandığımız n'inci terim için şunu elde ederiz: a 5 = a 1 + 4 * d. Başlangıç: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Burada elde ettiğimiz şey farkın tam sayı değeri değil, rasyonel bir sayıdır, dolayısıyla cebirsel ilerlemenin formülleri aynı kalır.

Şimdi bulunan farkı 1'e ekleyelim ve ilerlemenin eksik terimlerini geri yükleyelim. Şunu elde ederiz: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, bunlar çakışıyor Sorunun koşulları ile.

Örnek No. 4: ilerlemenin ilk dönemi

Çözümlü aritmetik ilerleme örnekleri vermeye devam edelim. Önceki problemlerin hepsinde cebirsel ilerlemenin ilk sayısı biliniyordu. Şimdi farklı türde bir problem düşünelim: a 15 = 50 ve a 43 = 37 olmak üzere iki sayı verilsin. Bu dizinin hangi sayıyla başladığını bulmak gerekiyor.

Şu ana kadar kullanılan formüller a 1 ve d'nin bilgisini varsaymaktadır. Problem ifadesinde bu sayılar hakkında hiçbir şey bilinmemektedir. Bununla birlikte, hakkında bilgi bulunan her terim için ifadeleri yazacağız: a 15 = a 1 + 14 * d ve a 43 = a 1 + 42 * d. 2 bilinmeyen miktarın (a 1 ve d) olduğu iki denklem aldık. Bu, problemin bir doğrusal denklem sisteminin çözümüne indirgendiği anlamına gelir.

Bu sistemi çözmenin en kolay yolu, her denklemde 1'i ifade etmek ve ardından elde edilen ifadeleri karşılaştırmaktır. Birinci denklem: a 1 = a 15 - 14 * d = 50 - 14 * d; ikinci denklem: a 1 = a 43 - 42 * d = 37 - 42 * d. Bu ifadeleri eşitleyerek şunu elde ederiz: 50 - 14 * d = 37 - 42 * d, dolayısıyla fark d = (37 - 50) / (42 - 14) = - 0,464 (yalnızca 3 ondalık basamak verilmiştir).

D'yi bildiğinize göre, 1 için yukarıdaki 2 ifadeden herhangi birini kullanabilirsiniz. Örneğin ilk olarak: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Elde edilen sonuçtan şüpheniz varsa kontrol edebilirsiniz, örneğin durumda belirtilen ilerlemenin 43. dönemini belirleyebilirsiniz. Şunu elde ederiz: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Küçük hata, hesaplamalarda binde birine yuvarlamanın kullanılmasından kaynaklanmaktadır.

Örnek No. 5: tutar

Şimdi bir aritmetik ilerlemenin toplamının çözümlerini içeren birkaç örneğe bakalım.

Verilmesine izin ver sayısal ilerleme aşağıdaki biçimdedir: 1, 2, 3, 4, ...,. Bu sayıların 100'ünün toplamı nasıl hesaplanır?

Bilgisayar teknolojisinin gelişmesi sayesinde bu sorunu çözmek, yani tüm sayıları sırayla eklemek mümkündür; kişi Enter tuşuna bastığı anda bilgisayarın yapacağı bunu yapar. Ancak sunulan sayı serisinin cebirsel bir ilerleme olduğuna ve farkının 1'e eşit olduğuna dikkat ederseniz sorun zihinsel olarak çözülebilir. Toplam formülünü uygulayarak şunu elde ederiz: S n = n * ( a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Bu problemin “Gaussian” olarak adlandırılması ilginçtir çünkü 18. yüzyılın başında, henüz 10 yaşında olan ünlü Alman, bu problemi birkaç saniye içinde kafasında çözebilmiştir. Çocuk cebirsel ilerlemenin toplamının formülünü bilmiyordu ama dizinin sonundaki sayıları çiftler halinde toplarsanız her zaman aynı sonucu elde ettiğinizi fark etti: 1 + 100 = 2 + 99 = 3 + 98 = ... ve bu toplamlar tam olarak 50 (100/2) olacağından doğru cevabı almak için 50'yi 101 ile çarpmak yeterlidir.

Örnek No. 6: n'den m'ye kadar terimlerin toplamı

Aritmetik ilerlemenin toplamının bir başka tipik örneği şudur: 3, 7, 11, 15, ... gibi bir sayı dizisi verildiğinde, 8'den 14'e kadar olan terimlerin toplamının neye eşit olacağını bulmanız gerekir. .

Sorun iki şekilde çözülür. Bunlardan ilki, 8'den 14'e kadar bilinmeyen terimleri bulmayı ve ardından bunları sırayla toplamayı içerir. Terim sayısı az olduğundan bu yöntem pek emek yoğun değildir. Bununla birlikte, bu sorunun daha evrensel olan ikinci bir yöntemle çözülmesi önerilmektedir.

Buradaki fikir, n > m'nin tamsayı olduğu m ve n terimleri arasındaki cebirsel ilerlemenin toplamı için bir formül elde etmektir. Her iki durumda da toplam için iki ifade yazıyoruz:

  1. S m = m * (bir m + bir 1) / 2.
  2. S n = n * (bir n + bir 1) / 2.

n > m olduğundan 2. toplamın birinciyi içerdiği açıktır. Son sonuç, bu toplamlar arasındaki farkı alıp buna a m terimini eklersek (farkın alınması durumunda S n toplamından çıkarılır), probleme gerekli cevabı elde edeceğimiz anlamına gelir. Elimizde: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). Bu ifadede a n ve a m formüllerini yerine koymak gerekir. O zaman şunu elde ederiz: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Ortaya çıkan formül biraz hantaldır, ancak S mn toplamı yalnızca n, m, a 1 ve d'ye bağlıdır. Bizim durumumuzda a 1 = 3, d = 4, n = 14, m = 8. Bu sayıları yerine koyarsak şunu elde ederiz: S mn = 301.

Yukarıdaki çözümlerden de görülebileceği gibi, tüm problemler n'inci terimin ifadesi ve ilk terimler kümesinin toplamı formülü bilgisine dayanmaktadır. Bu sorunlardan herhangi birini çözmeye başlamadan önce, durumu dikkatlice okumanız, neyi bulmanız gerektiğini açıkça anlamanız ve ancak o zaman çözüme devam etmeniz önerilir.

Başka bir ipucu da basitlik için çabalamaktır, yani bir soruyu karmaşık matematiksel hesaplamalar kullanmadan cevaplayabiliyorsanız, o zaman tam da bunu yapmanız gerekir, çünkü bu durumda hata yapma olasılığı daha azdır. Örneğin, 6 numaralı çözümle aritmetik ilerleme örneğinde, S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m formülünde durabiliriz ve kırmak ortak görev ayrı alt görevlere ayırın (bu durumda önce a n ve a m terimlerini bulun).

Elde edilen sonuç hakkında şüpheleriniz varsa, verilen bazı örneklerde yapıldığı gibi kontrol etmeniz önerilir. Aritmetik ilerlemeyi nasıl bulacağımızı öğrendik. Bunu anlarsanız, o kadar da zor değil.

Tıpkı resim ve şiir gibi matematiğin de kendine has bir güzelliği vardır.

Rus bilim adamı, tamirci N.E. Zhukovski

Çok yaygın görevler giriş sınavları Matematikte aritmetik ilerleme kavramıyla ilgili problemler vardır. Bu tür problemleri başarılı bir şekilde çözmek için aritmetik ilerlemenin özellikleri hakkında iyi bir bilgiye sahip olmanız ve bunların uygulanmasında belirli becerilere sahip olmanız gerekir.

Öncelikle aritmetik ilerlemenin temel özelliklerini hatırlayalım ve en önemli formülleri sunalım., bu kavramla ilgilidir.

Tanım. Numara dizisi, takip eden her terimin bir öncekinden aynı sayıda farklı olduğu, aritmetik ilerleme denir. Bu durumda sayıilerleme farkı denir.

Aritmetik ilerleme için aşağıdaki formüller geçerlidir:

, (1)

Nerede . Formül (1), bir aritmetik ilerlemenin genel teriminin formülü olarak adlandırılır ve formül (2), bir aritmetik ilerlemenin ana özelliğini temsil eder: ilerlemenin her terimi, komşu terimlerinin aritmetik ortalaması ile çakışır ve .

Tam olarak bu özellik nedeniyle, söz konusu ilerlemenin "aritmetik" olarak adlandırıldığını unutmayın.

Yukarıdaki formüller (1) ve (2) aşağıdaki şekilde genelleştirilmiştir:

(3)

Tutarı hesaplamak için Birinci aritmetik ilerleme terimleriformül genellikle kullanılır

(5) nerede ve .

Formülü dikkate alırsak (1), daha sonra formül (5)'ten şu sonuç çıkar:

Eğer belirtirsek, o zaman

Nerede . Çünkü formül (7) ve (8), karşılık gelen formüller (5) ve (6)'nın bir genellemesidir.

özellikle, formül (5)'ten şu sonuç çıkıyor, Ne

Aşağıdaki teorem aracılığıyla formüle edilen aritmetik ilerlemenin özelliği çoğu öğrenci tarafından çok az bilinmektedir.

Teorem. Eğer öyleyse

Kanıt. Eğer öyleyse

Teorem kanıtlandı.

Örneğin , teoremi kullanarak, gösterilebilir

“Aritmetik ilerleme” konusundaki tipik problem çözme örneklerini ele almaya devam edelim.

Örnek 1. Bırak olsun. Bulmak .

Çözüm. Formül (6)'yı uygulayarak elde ederiz. O zamandan beri ve , o zaman veya .

Örnek 2.Üç katı olsun, bölüme bölündüğünde sonuç 2, kalan 8 olsun. ve'yi belirleyin.

Çözüm.Örneğin koşullarından denklem sistemi aşağıdaki gibidir

, , ve olduğundan, denklem sisteminden (10) şunu elde ederiz:

Bu denklem sisteminin çözümü ve'dir.

Örnek 3. Eğer ve ise bulun.

Çözüm. Formül (5)'e göre elimizde veya var. Ancak (9) özelliğini kullanarak şunu elde ederiz.

O zamandan beri ve o zaman eşitlikten denklem şöyle veya .

Örnek 4. varsa bulun.

Çözüm.Formül (5)'e göre elimizde

Ancak teoremi kullanarak şunu yazabiliriz:

Buradan ve formül (11)'den şunu elde ederiz:

Örnek 5. Verilen: . Bulmak .

Çözüm. O zamandan beri. Ancak bu nedenle.

Örnek 6., ve . Bulmak .

Çözüm. Formül (9)'u kullanarak şunu elde ederiz: Bu nedenle, eğer , o zaman veya .

O zamandan beri ve o zaman burada bir denklem sistemimiz var

Hangisini çözersek ve alırız.

Denklemin doğal köküöyle.

Örnek 7. Eğer ve ise bulun.

Çözüm. Formül (3)'e göre elimizde bu olduğundan, denklem sistemi problem koşullarından çıkar.

İfadeyi yerine koyarsaksistemin ikinci denklemine, sonra veya elde ederiz.

İkinci dereceden bir denklemin kökleri Ve .

İki durumu ele alalım.

1. Let o zaman . O zamandan beri ve , o zaman .

Bu durumda formül (6)'ya göre elimizde

2. Eğer , o zaman ve

Cevap: ve.

Örnek 8.Öyle olduğu biliniyor ve. Bulmak .

Çözüm. Formül (5)'i ve örneğin durumunu dikkate alarak ve yazıyoruz.

Bu denklem sistemini ifade eder

Sistemin ilk denklemini 2 ile çarpıp ikinci denkleme eklersek, şunu elde ederiz:

Formül (9)'a göre elimizde. Bu bağlamda (12)'den şu sonuç çıkmaktadır: veya .

O zamandan beri ve , o zaman .

Cevap: .

Örnek 9. Eğer ve ise bulun.

Çözüm. O zamandan beri ve koşula göre, o zaman veya .

Formül (5)'ten bilinmektedir, Ne . O zamandan beri.

Buradan , burada bir doğrusal denklem sistemimiz var

Buradan ve alıyoruz. Formül (8)'i dikkate alarak yazıyoruz.

Örnek 10. Denklemi çözün.

Çözüm. Verilen denklemden şu çıkar. , , ve olduğunu varsayalım. Bu durumda.

Formül (1)'e göre veya yazabiliriz.

O zamandan beri denklem (13) tek uygun köke sahiptir.

Örnek 11. ve şartıyla maksimum değeri bulun.

Çözüm. O zamandan beri, söz konusu aritmetik ilerleme azalıyor. Bu bakımdan ifade, ilerlemenin minimum pozitif teriminin sayısı olduğunda maksimum değerini alır.

Formül (1)'i ve gerçeği kullanalım, bu ve . O zaman bunu veya .

O zamandan beri veya . Ancak bu eşitsizlikteen büyük doğal sayı, Bu yüzden .

, ve değerleri formül (6)'da yerine konulursa, elde ederiz.

Cevap: .

Örnek 12. Tüm iki basamaklı sayıların toplamını belirleyin doğal sayılar 6'ya bölündüğünde 5 kalanını verir.

Çözüm. Tüm iki basamaklı doğal sayılar kümesiyle gösterelim; . Daha sonra, kümenin 6 sayısına bölündüğünde 5 kalanını veren elemanlarından (sayılarından) oluşan bir alt küme oluşturacağız.

Kurulumu kolay, Ne . Açıkça , kümenin elemanlarıaritmetik bir ilerleme oluşturmak, hangisinde ve .

Kümenin önem derecesini (eleman sayısını) belirlemek için şunu varsayıyoruz: ve olduğundan, formül (1) veya'dan çıkar. Formül (5)'i dikkate alarak elde ederiz.

Yukarıdaki problem çözme örneklerinin hiçbir şekilde kapsamlı olduğu iddia edilemez. Bu makale analize dayanarak yazılmıştır. modern yöntemlerçözümler tipik görevler belirli bir konu üzerinde. Aritmetik ilerlemeyle ilgili problemlerin çözümüne yönelik yöntemlerin daha derinlemesine incelenmesi için önerilen literatür listesine bakılması tavsiye edilir.

1. Üniversitelere başvuranlar için matematik problemlerinin toplanması / Ed. Mİ. Scanavi. – M.: Barış ve Eğitim, 2013. – 608 s.

2. V.P.'yi iptal edin. Lise öğrencileri için matematik: ek bölümler okul müfredatı. – M.: Lenand / URSS, 2014. – 216 s.

3. Medynsky M.M. Problemler ve alıştırmalar içeren eksiksiz bir temel matematik dersi. Kitap 2: Sayı Dizileri ve İlerlemeler. – M.: Editus, 2015. – 208 s.

Hala sorularınız mı var?

Bir öğretmenden yardım almak için kaydolun.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

Ne asıl nokta formüller?

Bu formül bulmanızı sağlar herhangi NUMARASIYLA " N" .

Elbette ilk terimi de bilmeniz gerekir. 1 ve ilerleme farkı D, bu parametreler olmadan belirli bir ilerlemeyi yazamazsınız.

Bu formülü ezberlemek (veya not etmek) yeterli değildir. Bunun özünü anlamanız ve formülü çeşitli problemlere uygulamanız gerekir. Ve ayrıca doğru zamanda unutmamak gerekir, evet...) Nasıl unutma- Bilmiyorum. Ancak nasıl hatırlanır Gerekirse size mutlaka tavsiyede bulunacağım. Dersi sonuna kadar tamamlayanlar için.)

Şimdi aritmetik ilerlemenin n'inci teriminin formülüne bakalım.

Genel olarak formül nedir? Bu arada okumadıysanız bir göz atın. Orada her şey basit. Ne olduğunu anlamaya devam ediyor n'inci dönem.

İlerleme genel olarak bir sayı dizisi olarak yazılabilir:

bir 1, bir 2, bir 3, bir 4, bir 5, .....

1- aritmetik ilerlemenin ilk terimini belirtir, 3- üçüncü üye, 4- dördüncü vb. Beşinci dönemle ilgileniyorsak diyelim ki çalışıyoruz. 5, eğer yüz yirminci - s 120.

Genel hatlarıyla nasıl tanımlayabiliriz? herhangi aritmetik ilerleme terimi, herhangi sayı? Çok basit! Bunun gibi:

BİR

işte bu Bir aritmetik ilerlemenin n'inci terimi. N harfi tüm üye numaralarını aynı anda gizler: 1, 2, 3, 4 vb.

Peki böyle bir kayıt bize ne veriyor? Düşünün, sayı yerine mektup yazdılar...

Bu gösterim bize aritmetik ilerlemeyle çalışmak için güçlü bir araç sağlar. Gösterimi kullanma BİR, hızlı bir şekilde bulabiliriz herhangiüye herhangi aritmetik ilerleme. Ve bir sürü başka ilerleme problemini çözün. Daha fazlasını kendiniz göreceksiniz.

Aritmetik ilerlemenin n'inci terimi formülünde:

a n = a 1 + (n-1)d

1- aritmetik ilerlemenin ilk terimi;

N- üye numarası.

Formül, herhangi bir ilerlemenin temel parametrelerini birbirine bağlar: BİR ; bir 1; D Ve N. Tüm ilerleme sorunları bu parametreler etrafında döner.

N'inci terim formülü ayrıca belirli bir ilerlemeyi yazmak için de kullanılabilir. Örneğin problem, ilerlemenin koşul tarafından belirtildiğini söyleyebilir:

a n = 5 + (n-1) 2.

Böyle bir sorun çıkmaz sokak olabilir... Ne bir seri ne de bir fark vardır... Ama durumu formülle karşılaştırınca bu ilerlemede bunu anlamak kolaydır. a 1 =5 ve d=2.

Hatta daha da kötüsü olabilir!) Aynı koşulu alırsak: a n = 5 + (n-1) 2, Evet, parantezleri açıp benzerlerini getirir misiniz? Yeni bir formül elde ediyoruz:

bir n = 3 + 2n.

Bu Sadece genel değil, belirli bir ilerleme için. İşte tuzak burada gizleniyor. Bazıları ilk terimin üç olduğunu düşünüyor. Gerçekte ilk terim beş olmasına rağmen... Biraz daha düşük, böyle değiştirilmiş bir formülle çalışacağız.

İlerleme problemlerinde başka bir gösterim daha var - bir n+1. Bu, tahmin ettiğiniz gibi ilerlemenin “n artı ilk” terimidir. Anlamı basit ve zararsızdır.) Bu, sayısı n sayısından bir büyük olan dizinin bir üyesidir. Örneğin, eğer bir problemde alırsak BİR o zaman beşinci dönem bir n+1 altıncı üye olacak. Ve benzeri.

Çoğu zaman atama bir n+1 yineleme formüllerinde bulunur. Bu korkutucu kelimeden korkmayın!) Bu sadece aritmetik ilerlemenin bir üyesini ifade etmenin bir yoludur bir önceki aracılığıyla. Tekrarlanan bir formül kullanılarak bize bu biçimde bir aritmetik ilerleme verildiğini varsayalım:

bir n+1 = bir n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Dördüncüden üçüncüye, beşinciden dördüncüye vb. Mesela yirminci terimi hemen nasıl sayabiliriz? 20? Ama mümkün değil!) 19. dönemi bulana kadar 20. dönemi sayamayız. Tekrarlayan formül ile n'inci terimin formülü arasındaki temel fark budur. Tekrarlanan işler yalnızca aracılığıyla öncesi terim ve n'inci terimin formülü Birinci ve izin verir hemen herhangi bir üyeyi numarasına göre bulun. Tüm sayı dizisini sırayla hesaplamadan.

Aritmetik ilerlemede tekrarlanan bir formülü düzenli bir formüle dönüştürmek kolaydır. Bir çift ardışık terimi sayın, farkı hesaplayın D, gerekirse ilk terimi bulun 1, formülü her zamanki biçiminde yazın ve onunla çalışın. Bu tür görevlere Devlet Bilimler Akademisi'nde sıklıkla rastlanmaktadır.

Bir aritmetik ilerlemenin n'inci terimi için formülün uygulanması.

Öncelikle formülün doğrudan uygulamasına bakalım. Önceki dersin sonunda bir sorun vardı:

Aritmetik ilerleme (a n) verilmiştir. a 1 =3 ve d=1/6 ise 121'i bulun.

Bu problem herhangi bir formül olmadan, sadece aritmetik ilerlemenin anlamına dayanarak çözülebilir. Ekle ve ekle... Bir veya iki saat.)

Ve formüle göre çözüm bir dakikadan az sürecek. Zamanlamasını ayarlayabilirsiniz.) Hadi karar verelim.

Koşullar formülün kullanılmasına ilişkin tüm verileri sağlar: a 1 =3, d=1/6. Neyin eşit olduğunu bulmaya devam ediyor N. Soru yok! bulmamız lazım 121. O halde şunu yazıyoruz:

Lütfen dikkat edin! Bir indeks yerine N belirli bir sayı ortaya çıktı: 121. Bu oldukça mantıklı.) Aritmetik ilerlemenin üyesiyle ilgileniyoruz yüz yirmi bir numara. Bu bizim olacak N. anlamı bu N= 121'i formülde parantez içinde değiştireceğiz. Tüm sayıları formülde yerine koyarız ve hesaplarız:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

İşte bu. Beş yüz onuncu terimi ve bin üçüncü terimi de aynı hızla bulabiliriz. Onun yerine koyduk N" harfinin dizininde istenen sayı A" ve parantez içinde sayıyoruz.

Size şunu hatırlatmama izin verin: Bu formül bulmanızı sağlar herhangi aritmetik ilerleme terimi NUMARASIYLA " N" .

Sorunu daha kurnaz bir şekilde çözelim. Aşağıdaki sorunla karşılaşalım:

a 17 =-2 ise, aritmetik ilerlemenin ilk terimini (a n) bulun; d=-0,5.

Herhangi bir zorlukla karşılaşırsanız size ilk adımı anlatacağım. Aritmetik ilerlemenin n'inci teriminin formülünü yazın! Evet, evet. Ellerinizle doğrudan not defterinize yazın:

a n = a 1 + (n-1)d

Ve şimdi formülün harflerine baktığımızda hangi verilere sahip olduğumuzu ve neyin eksik olduğunu anlıyoruz? Mevcut d=-0,5, on yedinci bir üye var... Öyle mi? Eğer böyle düşünürsen sorunu çözemezsin, evet...

Hala bir numaramız var N! Durumda a 17 =-2 gizlenmiş iki parametre. Bu hem on yedinci terimin değeri (-2) hem de sayısıdır (17). Onlar. n=17. Bu "önemsiz şey" çoğu zaman kafanın yanından geçer ve o olmadan ("önemsiz" olmadan, kafa değil!) sorun çözülemez. Yine de... ve kafasız da.)

Artık verilerimizi aptalca bir şekilde formüle koyabiliriz:

a 17 = a 1 + (17-1)·(-0,5)

Ah evet, 17-2 olduğunu biliyoruz. Tamam, yerine koyalım:

-2 = a 1 + (17-1)·(-0,5)

Temelde hepsi bu. Geriye formülden aritmetik ilerlemenin ilk terimini ifade etmek ve hesaplamak kalıyor. Cevap şöyle olacaktır: 1 = 6.

Bir formül yazmak ve bilinen verileri basitçe yerine koymaktan oluşan bu teknik, basit görevlerde çok yardımcı olur. Elbette bir değişkeni formülden ifade edebilmeniz gerekiyor ama ne yapmalısınız? Bu beceri olmadan matematik hiç çalışılmayabilir...

Bir başka popüler bulmaca:

a 1 =2 ise, aritmetik ilerlemenin (a n) farkını bulun; 15 =12.

Ne yapıyoruz? Şaşıracaksınız, formülü yazıyoruz!)

a n = a 1 + (n-1)d

Bildiklerimizi düşünelim: a 1 =2; a 15 =12; ve (özellikle vurgulayacağım!) n=15. Bunu formülde değiştirmekten çekinmeyin:

12=2 + (15-1)d

Aritmetik yapıyoruz.)

12=2 + 14d

D=10/14 = 5/7

Bu doğru cevaptır.

Yani, görevler bir n, bir 1 Ve D karar verilmiş. Geriye kalan tek şey numarayı nasıl bulacağınızı öğrenmek:

99 sayısı aritmetik ilerlemenin (an) bir üyesidir; burada a 1 =12; d=3. Bu üyenin numarasını bulun.

Bildiğimiz miktarları n'inci terimin formülüne koyarız:

a n = 12 + (n-1) 3

İlk bakışta burada bilinmeyen iki büyüklük var: bir n ve n. Ancak BİR- bu bir sayı ile ilerlemenin bir üyesidir N...Ve ilerlemenin bu üyesini tanıyoruz! 99. Numarasını bilmiyoruz. N, Yani bulmanız gereken şey bu sayıdır. 99 ilerlemesinin terimini formülde değiştiririz:

99 = 12 + (n-1)3

Formülden ifade ediyoruz N, düşünüyoruz. Cevabını alıyoruz: n=30.

Şimdi de aynı konuyla ilgili bir problem ama daha yaratıcı):

117 sayısının aritmetik ilerlemenin (a n) bir üyesi olup olmadığını belirleyin:

-3,6; -2,4; -1,2 ...

Formülü tekrar yazalım. Ne, hiç parametre yok mu? Hım... Bize neden göz veriliyor?) İlerlemenin ilk dönemini görüyor muyuz? Görüyoruz. Bu -3.6. Güvenle yazabilirsiniz: 1 = -3,6. Fark D Diziden anlayabilir misiniz? Aritmetik ilerlemenin farkının ne olduğunu biliyorsanız bunu yapmak kolaydır:

d = -2,4 - (-3,6) = 1,2

Yani en basit şeyi yaptık. Geriye kalan tek şey bilinmeyen numarayla uğraşmak N ve anlaşılmaz sayı olan 117. Bir önceki problemde en azından verilen ilerlemenin terimi olduğu biliniyordu. Ama burada onu bile bilmiyoruz... Ne yapmalı!? Peki ne yapmalı, ne yapmalı... Aç yaratıcılık!)

Biz sanmak sonuçta 117 bizim ilerleyişimizin bir üyesi. Bilinmeyen bir numarayla N. Ve tıpkı önceki problemde olduğu gibi bu sayıyı bulmaya çalışalım. Onlar. formülü yazıyoruz (evet, evet!) ve sayılarımızı değiştiriyoruz:

117 = -3,6 + (n-1) 1,2

Yine formülden ifade ediyoruzN, sayarız ve şunu elde ederiz:

Hata! Sayı ortaya çıktı kesirli! Yüz bir buçuk. Ve ilerlemelerdeki kesirli sayılar olmaz. Hangi sonuca varabiliriz? Evet! 117 numara değil ilerlememizin bir üyesi. Yüz birinci terim ile yüz ikinci terim arasında bir yerdedir. Sayı doğal çıkarsa, yani. pozitif bir tam sayı ise sayı, bulunan sayı ile ilerlemenin bir üyesi olacaktır. Ve bizim durumumuzda sorunun cevabı şöyle olacaktır: HAYIR.

GIA'nın gerçek versiyonunu temel alan bir görev:

Aritmetik ilerleme şu koşulla verilir:

a n = -4 + 6,8n

İlerlemenin birinci ve onuncu terimlerini bulun.

Burada ilerleme alışılmadık bir şekilde ayarlanıyor. Bir çeşit formül... Olur.) Ancak bu formül (yukarıda yazdığım gibi) - ayrıca bir aritmetik ilerlemenin n'inci teriminin formülü! O da izin veriyor ilerlemenin herhangi bir üyesini numarasına göre bulun.

İlk üyeyi arıyoruz. Düşünen kişi. ilk terimin eksi dört olması büyük bir yanılgıdır!) Çünkü problemdeki formül değiştirildi. Aritmetik ilerlemenin ilk terimi gizlenmiş. Sorun değil, şimdi bulacağız.)

Daha önceki problemlerde olduğu gibi yerine n=1 bu formüle:

a 1 = -4 + 6,8 1 = 2,8

Burada! İlk terim -4 değil 2,8!

Onuncu terimi de aynı şekilde arıyoruz:

a 10 = -4 + 6,8 10 = 64

İşte bu.

Ve şimdi bu satırları okuyanlar için vaat edilen bonus.)

Diyelim ki zorlu bir savaş durumunda, Devlet Muayenesi veya Birleşik Devlet Muayenesi'ni unuttunuz faydalı formül Bir aritmetik ilerlemenin n'inci terimi. Bir şey hatırlıyorum ama bir şekilde emin olamıyorum... Veya N orada veya n+1 veya n-1... Nasıl olunur?

Sakinlik! Bu formülün türetilmesi kolaydır. Çok katı değil ama güven ve doğru karar için kesinlikle yeterli!) Bir sonuca varmak için aritmetik ilerlemenin temel anlamını hatırlamak ve birkaç dakika zaman ayırmak yeterlidir. Sadece bir resim çizmeniz yeterli. Netlik için.

Bir sayı doğrusu çizin ve ilkini işaretleyin. ikinci, üçüncü vb. üyeler. Ve farkı not ediyoruz Düyeler arasında. Bunun gibi:

Resme bakıyoruz ve düşünüyoruz: İkinci terim neye eşittir? Saniye bir D:

A 2 =a 1 + 1 D

Üçüncü terim nedir? Üçüncü terim ilk terimin artısına eşittir iki D.

A 3 =a 1 + 2 D

Anladın mı? Bazı kelimeleri kalın harflerle vurgulamam boşuna değil. Tamam, bir adım daha).

Dördüncü terim nedir? Dördüncü terim ilk terimin artısına eşittir üç D.

A 4 =a 1 + 3 D

Boşlukların sayısının, yani. D, Her zaman Aradığınız üye sayısından bir eksik N. Yani sayıya n, boşluk sayısı irade n-1. Bu nedenle formül şu şekilde olacaktır (değişiklikler olmadan!):

a n = a 1 + (n-1)d

Genel olarak görsel resimler matematikteki birçok problemin çözümünde oldukça faydalıdır. Resimleri ihmal etmeyin. Ancak bir resim çizmek zorsa, o zaman... sadece bir formül!) Ek olarak, n'inci terimin formülü, matematiğin tüm güçlü cephaneliğini çözüme - denklemler, eşitsizlikler, sistemler vb. - bağlamanıza olanak tanır. Denkleme resim ekleyemezsiniz...

Bağımsız çözüm için görevler.

Isınmak için:

1. Aritmetik ilerlemede (a n) a 2 =3; a 5 =5,1. 3'ü bulun.

İpucu: Resme göre sorun 20 saniyede çözülebilir... Formüle göre daha zor çıkıyor. Ancak formüle hakim olmak için daha kullanışlıdır.) Bölüm 555'te bu sorun hem resim hem de formül kullanılarak çözülmektedir. Farkı hissedin!)

Ve bu artık bir ısınma değil.)

2. Aritmetik ilerlemede (an) a 85 =19,1; a 236 =49, 3. a 3'ü bulun.

Ne, resim çizmek istemiyor musun?) Elbette! Formüle göre daha iyi, evet...

3. Aritmetik ilerleme şu koşulla verilir:a 1 = -5,5; a n+1 = a n +0,5. Bu ilerlemenin yüz yirmi beşinci terimini bulun.

Bu görevde ilerleme yinelenen bir şekilde belirtilir. Ama yüz yirmi beşinci döneme kadar sayarsak... Herkes böyle bir başarıya sahip değildir.) Ama n'inci dönemin formülü herkesin gücündedir!

4. Aritmetik ilerleme (a n) verildiğinde:

-148; -143,8; -139,6; -135,4, .....

İlerlemenin en küçük pozitif teriminin sayısını bulun.

5. Görev 4'ün koşullarına göre ilerlemenin en küçük pozitif ve en büyük negatif terimlerinin toplamını bulun.

6. Artan aritmetik ilerlemenin beşinci ve on ikinci terimlerinin çarpımı -2,5'e, üçüncü ve on birinci terimlerin toplamı ise sıfıra eşittir. 14'ü bulun.

En kolay iş değil evet...) “Parmak ucu” yöntemi burada işe yaramayacak. Formüller yazmanız ve denklemleri çözmeniz gerekecek.

Cevaplar (karışıklık içinde):

3,7; 3,5; 2,2; 37; 2,7; 56,5

İşe yaradı mı? Çok hoş!)

Her şey yolunda gitmiyor mu? Olur. Bu arada son görevde ince bir nokta var. Sorunu okurken dikkatli olunması gerekecektir. Ve mantık.

Tüm bu sorunların çözümü Bölüm 555'te ayrıntılı olarak tartışılmaktadır. Dördüncüsü için fantezi unsuru, altıncısı için ince nokta ve n'inci terimin formülünü içeren herhangi bir problemin çözümü için genel yaklaşımlar - her şey anlatılmıştır. Tavsiye ederim.

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.