Aritmetik ilerlemenin n'inci terimi için formül. Aritmetik ilerleme - sayı dizisi Aritmetik ilerlemede bir sayı nasıl bulunur?


Örneğin \(2\); dizisi \(5\); \(8\); \(11\); \(14\)... aritmetik bir ilerlemedir, çünkü sonraki her öğe bir öncekinden üç kat farklıdır (bir öncekinden üç ekleyerek elde edilebilir):

Bu ilerlemede, \(d\) farkı pozitiftir (\(3\'e eşittir) ve dolayısıyla her bir sonraki terim bir öncekinden daha büyüktür. Bu tür ilerlemelere denir artan.

Ancak \(d\) negatif bir sayı da olabilir. Örneğin, aritmetik ilerlemede \(16\); \(10\); \(4\); \(-2\); \(-8\)... ilerleme farkı \(d\) eksi altıya eşittir.

Ve bu durumda, sonraki her öğe bir öncekinden daha küçük olacaktır. Bu ilerlemelere denir azalan.

Aritmetik ilerleme gösterimi

İlerleme küçük bir Latin harfiyle gösterilir.

Bir dizi oluşturan sayılara denir üyeler(veya öğeler).

Aritmetik ilerlemeyle aynı harfle gösterilirler, ancak sıradaki öğe sayısına eşit bir sayısal indeksle gösterilirler.

Örneğin, aritmetik ilerleme\(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) \(a_1=2\); elemanlarından oluşur \(a_2=5\); \(a_3=8\) vb.

Başka bir deyişle, ilerleme için \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmetik ilerleme problemlerini çözme

Prensip olarak, yukarıda sunulan bilgiler hemen hemen her aritmetik ilerleme problemini (OGE'de sunulanlar dahil) çözmek için zaten yeterlidir.

Örnek (OGE). Aritmetik ilerleme \(b_1=7; d=4\) koşullarıyla belirtilir. \(b_5\) bulun.
Çözüm:

Cevap: \(b_5=23\)

Örnek (OGE). Bir aritmetik ilerlemenin ilk üç terimi verilmiştir: \(62; 49; 36…\) Bu ilerlemenin ilk negatif teriminin değerini bulun.
Çözüm:

Bize dizinin ilk elemanları veriliyor ve bunun aritmetik bir ilerleme olduğunu biliyoruz. Yani her element komşusundan aynı sayıda farklılık gösterir. Bir öncekini sonraki elemandan çıkararak hangisi olduğunu bulalım: \(d=49-62=-13\).

Artık ilerlememizi ihtiyacımız olan (ilk negatif) unsura geri döndürebiliriz.

Hazır. Cevap yazabilirsiniz.

Cevap: \(-3\)

Örnek (OGE). Bir aritmetik dizinin ardışık birkaç elemanı verildiğinde: \(…5; x; 10; 12.5...\) \(x\) harfiyle gösterilen elemanın değerini bulun.
Çözüm:


\(x\)'i bulmak için bir sonraki elemanın bir öncekinden ne kadar farklı olduğunu yani ilerleme farkını bilmemiz gerekir. Bunu bilinen iki komşu elemandan bulalım: \(d=12.5-10=2.5\).

Artık aradığımız şeyi kolaylıkla bulabiliyoruz: \(x=5+2.5=7.5\).


Hazır. Cevap yazabilirsiniz.

Cevap: \(7,5\).

Örnek (OGE). Aritmetik ilerleme aşağıdaki koşullarla tanımlanır: \(a_1=-11\); \(a_(n+1)=a_n+5\) Bu ilerlemenin ilk altı teriminin toplamını bulun.
Çözüm:

İlerlemenin ilk altı teriminin toplamını bulmamız gerekiyor. Ama bunların anlamlarını bilmiyoruz; bize yalnızca ilk unsur veriliyor. Bu nedenle öncelikle bize verilenleri kullanarak değerleri tek tek hesaplıyoruz:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
İhtiyacımız olan altı elementi hesapladıktan sonra toplamlarını buluyoruz.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Gerekli miktar bulunmuştur.

Cevap: \(S_6=9\).

Örnek (OGE). Aritmetik ilerlemede \(a_(12)=23\); \(a_(16)=51\). Bu ilerlemenin farkını bulun.
Çözüm:

Cevap: \(d=7\).

Aritmetik ilerleme için önemli formüller

Gördüğünüz gibi, aritmetik ilerlemeyle ilgili birçok problem, asıl meselenin anlaşılmasıyla çözülebilir - aritmetik ilerlemenin bir sayı zinciri olduğu ve bu zincirdeki sonraki her öğenin, aynı sayının bir öncekine eklenmesiyle elde edildiği ( ilerleme farkı).

Ancak bazen "kafa kafaya" karar vermenin çok sakıncalı olduğu durumlar vardır. Örneğin, ilk örnekte beşinci elementi \(b_5\) değil, üç yüz seksen altıncı \(b_(386)\) bulmamız gerektiğini düşünün. Dört \(385\) kez mi eklememiz gerekiyor? Veya sondan bir önceki örnekte ilk yetmiş üç elementin toplamını bulmanız gerektiğini hayal edin. Saymaktan yorulacaksınız...

Dolayısıyla bu gibi durumlarda işleri “birdenbire” çözmezler, aritmetik ilerleme için türetilmiş özel formüller kullanırlar. Ve bunların başlıcaları ilerlemenin n'inci terimi için formül ve \(n\) ilk terimin toplamı için formüldür.

\(n\)'inci terimin formülü: \(a_n=a_1+(n-1)d\), burada \(a_1\) ilerlemenin ilk terimidir;
\(n\) – gerekli öğenin numarası;
\(a_n\) – \(n\) sayısıyla ilerlemenin terimi.


Bu formül, yalnızca ilkini ve ilerlemenin farkını bilerek üç yüzüncü veya milyonuncu elementi bile hızlı bir şekilde bulmamızı sağlar.

Örnek. Aritmetik ilerleme şu koşullarla belirtilir: \(b_1=-159\); \(d=8.2\). \(b_(246)\)'ı bulun.
Çözüm:

Cevap: \(b_(246)=1850\).

İlk n terimin toplamına ilişkin formül: \(S_n=\frac(a_1+a_n)(2) \cdot n\), burada



\(a_n\) – son toplanan terim;


Örnek (OGE). Aritmetik ilerleme \(a_n=3.4n-0.6\) koşullarıyla belirtilir. Bu ilerlemenin ilk \(25\) teriminin toplamını bulun.
Çözüm:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

İlk yirmi beş terimin toplamını hesaplamak için birinci ve yirmi beşinci terimin değerini bilmemiz gerekir.
İlerlememiz, sayısına bağlı olarak n'inci terimin formülü ile verilmektedir (daha fazla ayrıntı için bkz.). \(n\) yerine bir tane koyarak ilk elemanı hesaplayalım.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Şimdi \(n\) yerine yirmi beş koyarak yirmi beşinci terimi bulalım.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Artık gerekli miktarı kolayca hesaplayabiliriz.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Cevap hazır.

Cevap: \(S_(25)=1090\).

İlk terimlerin \(n\) toplamı için başka bir formül elde edebilirsiniz: sadece \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \'ye ihtiyacınız var (\cdot 25\ ) \(a_n\) yerine \(a_n=a_1+(n-1)d\) formülünü kullanın. Şunu elde ederiz:

İlk n terimin toplamına ilişkin formül: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), burada

\(S_n\) – \(n\) ilk elemanın gerekli toplamı;
\(a_1\) – ilk toplanan terim;
\(d\) – ilerleme farkı;
\(n\) – toplamdaki öğe sayısı.

Örnek. Aritmetik ilerlemenin ilk \(33\)-ex terimlerinin toplamını bulun: \(17\); \(15.5\); \(14\)…
Çözüm:

Cevap: \(S_(33)=-231\).

Daha karmaşık aritmetik ilerleme problemleri

Artık hemen hemen her aritmetik ilerleme problemini çözmek için ihtiyacınız olan tüm bilgilere sahipsiniz. Sadece formülleri uygulamanız değil, biraz da düşünmeniz gereken problemleri ele alarak konuyu bitirelim (matematikte bu işinize yarayabilir ☺)

Örnek (OGE). İlerlemedeki tüm negatif terimlerin toplamını bulun: \(-19.3\); \(-19\); \(-18,7\)…
Çözüm:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Görev bir öncekine çok benzer. Aynı şeyi çözmeye başlıyoruz: önce \(d\)'yi buluyoruz.

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Şimdi toplam formülüne \(d\) koymak istiyoruz... ve burada küçük bir nüans ortaya çıkıyor - \(n\)'i bilmiyoruz. Başka bir deyişle kaç terimin eklenmesi gerektiğini bilmiyoruz. Nasıl öğrenilir? Düşünelim. İlk pozitif öğeye ulaştığımızda öğe eklemeyi bırakacağız. Yani bu elementin sayısını bulmanız gerekiyor. Nasıl? Bizim durumumuz için aritmetik ilerlemenin herhangi bir elemanını hesaplamak için formülü yazalım: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Sıfırdan büyük olması için \(a_n\)'a ihtiyacımız var. Bunun ne zaman olacağını \(n\) öğrenelim.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Eşitsizliğin her iki tarafını \(0,3\)'a bölüyoruz.

\(n-1>\)\(\frac(19.3)(0.3)\)

İşaretleri değiştirmeyi unutmadan eksi bir aktarıyoruz

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hadi hesaplayalım...

\(n>65,333…\)

...ve ilk pozitif elemanın \(66\) sayısına sahip olacağı ortaya çıktı. Buna göre son negatif \(n=65\) olur. Her ihtimale karşı şunu kontrol edelim.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Bu yüzden ilk \(65\) elemanını eklememiz gerekiyor.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Cevap hazır.

Cevap: \(S_(65)=-630.5\).

Örnek (OGE). Aritmetik ilerleme şu koşullarla belirtilir: \(a_1=-33\); \(a_(n+1)=a_n+4\). \(26\)'ncı elemandan \(42\) elemanına kadar olan toplamı bulun.
Çözüm:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Bu problemde ayrıca elemanların toplamını bulmanız gerekir, ancak ilkinden değil \(26\)'dan başlayarak. Böyle bir durum için elimizde bir formül yok. Nasıl karar verilir?
Çok kolay - \(26\)'dan \(42\)'ye kadar olan toplamı bulmak için, önce \(1\)'den \(42\)'ye kadar olan toplamı bulmalı ve sonra çıkarmalısınız ondan birinciden \(25\)'inciye kadar olan toplam (resme bakın).


İlerlememiz için \(a_1=-33\) ve fark \(d=4\) (sonuçta, bir sonrakini bulmak için önceki öğeye eklediğimiz dört öğedir). Bunu bilerek ilk \(42\)-y elemanlarının toplamını buluyoruz.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Şimdi ilk \(25\) elemanların toplamı.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ve son olarak cevabı hesaplıyoruz.

\(S=S_(42)-S_(25)=2058-375=1683\)

Cevap: \(S=1683\).

Aritmetik ilerleme için, pratik kullanışlılığının düşük olması nedeniyle bu makalede dikkate almadığımız birkaç formül daha vardır. Ancak bunları kolayca bulabilirsiniz.

Tıpkı resim ve şiir gibi matematiğin de kendine has bir güzelliği vardır.

Rus bilim adamı, tamirci N.E. Zhukovski

Çok yaygın görevler giriş sınavları Matematikte aritmetik ilerleme kavramıyla ilgili problemler vardır. Bu tür problemleri başarılı bir şekilde çözmek için aritmetik ilerlemenin özellikleri hakkında iyi bir bilgiye sahip olmanız ve bunların uygulanmasında belirli becerilere sahip olmanız gerekir.

Öncelikle aritmetik ilerlemenin temel özelliklerini hatırlayalım ve en önemli formülleri sunalım., bu kavramla ilgilidir.

Tanım. Numara dizisi, takip eden her terimin bir öncekinden aynı sayıda farklı olduğu, aritmetik ilerleme denir. Bu durumda sayıilerleme farkı denir.

Aritmetik ilerleme için aşağıdaki formüller geçerlidir:

, (1)

Nerede . Formül (1), bir aritmetik ilerlemenin genel teriminin formülü olarak adlandırılır ve formül (2), bir aritmetik ilerlemenin ana özelliğini temsil eder: ilerlemenin her terimi, komşu terimlerinin aritmetik ortalaması ile çakışır ve .

Tam olarak bu özellik nedeniyle, söz konusu ilerlemenin "aritmetik" olarak adlandırıldığını unutmayın.

Yukarıdaki formüller (1) ve (2) aşağıdaki şekilde genelleştirilmiştir:

(3)

Tutarı hesaplamak için Birinci aritmetik ilerleme terimleriformül genellikle kullanılır

(5) nerede ve .

Formülü dikkate alırsak (1), daha sonra formül (5)'ten şu sonuç çıkar:

Eğer belirtirsek, o zaman

Nerede . Çünkü formül (7) ve (8), karşılık gelen formüller (5) ve (6)'nın bir genellemesidir.

özellikle, formül (5)'ten şu sonuç çıkıyor, Ne

Aşağıdaki teorem aracılığıyla formüle edilen aritmetik ilerlemenin özelliği çoğu öğrenci tarafından çok az bilinmektedir.

Teorem. Eğer öyleyse

Kanıt. Eğer öyleyse

Teorem kanıtlandı.

Örneğin , teoremi kullanarak, gösterilebilir

“Aritmetik ilerleme” konusundaki tipik problem çözme örneklerini ele almaya devam edelim.

Örnek 1. Bırak olsun. Bulmak .

Çözüm. Formül (6)'yı uygulayarak elde ederiz. O zamandan beri ve , o zaman veya .

Örnek 2.Üç katı olsun, bölüme bölündüğünde sonuç 2, kalan 8 olsun. ve'yi belirleyin.

Çözüm.Örneğin koşullarından denklem sistemi aşağıdaki gibidir

, , ve olduğundan, denklem sisteminden (10) şunu elde ederiz:

Bu denklem sisteminin çözümü ve'dir.

Örnek 3. Eğer ve ise bulun.

Çözüm. Formül (5)'e göre elimizde veya var. Ancak (9) özelliğini kullanarak şunu elde ederiz.

O zamandan beri ve o zaman eşitlikten denklem şöyle veya .

Örnek 4. varsa bulun.

Çözüm.Formül (5)'e göre elimizde

Ancak teoremi kullanarak şunu yazabiliriz:

Buradan ve formül (11)'den şunu elde ederiz:

Örnek 5. Verilen: . Bulmak .

Çözüm. O zamandan beri. Ancak bu nedenle.

Örnek 6., ve . Bulmak .

Çözüm. Formül (9)'u kullanarak şunu elde ederiz: Bu nedenle, eğer , o zaman veya .

O zamandan beri ve o zaman burada bir denklem sistemimiz var

Hangisini çözersek ve alırız.

Denklemin doğal köküöyle.

Örnek 7. Eğer ve ise bulun.

Çözüm. Formül (3)'e göre elimizde bu olduğundan, denklem sistemi problem koşullarından çıkar.

İfadeyi yerine koyarsaksistemin ikinci denklemine, sonra veya elde ederiz.

Kökler ikinci dereceden denklemöyle Ve .

İki durumu ele alalım.

1. Let o zaman . O zamandan beri ve , o zaman .

Bu durumda formül (6)'ya göre elimizde

2. Eğer , o zaman ve

Cevap: ve.

Örnek 8.Öyle olduğu biliniyor ve. Bulmak .

Çözüm. Formül (5)'i ve örneğin durumunu dikkate alarak ve yazıyoruz.

Bu denklem sistemini ifade eder

Sistemin ilk denklemini 2 ile çarpıp ikinci denkleme eklersek, şunu elde ederiz:

Formül (9)'a göre elimizde. Bu bağlamda (12)'den şu sonuç çıkmaktadır: veya .

O zamandan beri ve , o zaman .

Cevap: .

Örnek 9. Eğer ve ise bulun.

Çözüm. O zamandan beri ve koşula göre, o zaman veya .

Formül (5)'ten bilinmektedir, Ne . O zamandan beri.

Buradan , burada bir doğrusal denklem sistemimiz var

Buradan ve alıyoruz. Formül (8)'i dikkate alarak yazıyoruz.

Örnek 10. Denklemi çözün.

Çözüm. Verilen denklemden şu çıkar. , , ve olduğunu varsayalım. Bu durumda.

Formül (1)'e göre veya yazabiliriz.

O zamandan beri denklem (13) tek uygun köke sahiptir.

Örnek 11. ve şartıyla maksimum değeri bulun.

Çözüm. O zamandan beri, söz konusu aritmetik ilerleme azalıyor. Bu bakımdan ifade, ilerlemenin minimum pozitif teriminin sayısı olduğunda maksimum değerini alır.

Formül (1)'i ve gerçeği kullanalım, bu ve . O zaman bunu veya .

O zamandan beri veya . Ancak bu eşitsizlikteen büyük doğal sayı, Bu yüzden .

, ve değerleri formül (6)'da yerine konulursa, elde ederiz.

Cevap: .

Örnek 12. Tüm iki basamaklı sayıların toplamını belirleyin doğal sayılar 6'ya bölündüğünde 5 kalanını verir.

Çözüm. Tüm iki basamaklı doğal sayılar kümesiyle gösterelim; . Daha sonra, kümenin 6 sayısına bölündüğünde 5 kalanını veren elemanlarından (sayılarından) oluşan bir alt küme oluşturacağız.

Kurulumu kolay, Ne . Açıkça , kümenin elemanlarıaritmetik bir ilerleme oluşturmak, hangisinde ve .

Kümenin önem derecesini (eleman sayısını) belirlemek için şunu varsayıyoruz: ve olduğundan, formül (1) veya'dan çıkar. Formül (5)'i dikkate alarak elde ederiz.

Yukarıdaki problem çözme örneklerinin hiçbir şekilde kapsamlı olduğu iddia edilemez. Bu makale analize dayanarak yazılmıştır. modern yöntemlerçözümler tipik görevler belirli bir konu üzerinde. Aritmetik ilerlemeyle ilgili problemlerin çözümüne yönelik yöntemlerin daha derinlemesine incelenmesi için önerilen literatür listesine bakılması tavsiye edilir.

1. Üniversitelere başvuranlar için matematik problemlerinin toplanması / Ed. Mİ. Scanavi. – M.: Barış ve Eğitim, 2013. – 608 s.

2. V.P.'yi iptal edin. Lise öğrencileri için matematik: ek bölümler okul müfredatı. – M.: Lenand / URSS, 2014. – 216 s.

3. Medynsky M.M. Problemler ve alıştırmalar içeren eksiksiz bir temel matematik dersi. Kitap 2: Sayı Dizileri ve İlerlemeler. – M.: Editus, 2015. – 208 s.

Hala sorularınız mı var?

Bir öğretmenden yardım almak için kaydolun.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.

Cebir okurken ortaokul(9. sınıf) önemli konulardan biri geometrik ve aritmetik ilerlemeleri içeren sayı dizilerinin incelenmesidir. Bu yazıda aritmetik ilerlemeye ve çözümlü örneklere bakacağız.

Aritmetik ilerleme nedir?

Bunu anlamak için hem söz konusu ilerlemeyi tanımlamak hem de daha sonra problemlerin çözümünde kullanılacak temel formülleri sağlamak gerekir.

Aritmetik veya cebirsel ilerleme, her bir terimi bir öncekinden sabit bir değerle farklı olan bir dizi sıralı rasyonel sayıdır. Bu değere fark denir. Yani, sıralı bir sayı serisinin herhangi bir üyesini ve farkı bilerek, tüm aritmetik ilerlemeyi geri yükleyebilirsiniz.

Bir örnek verelim. Aşağıdaki sayı dizisi aritmetik bir ilerleme olacaktır: 4, 8, 12, 16, ..., çünkü bu durumda fark 4'tür (8 - 4 = 12 - 8 = 16 - 12). Ancak 3, 5, 8, 12, 17 sayı kümesi artık söz konusu ilerleme türüne atfedilemez, çünkü bunun farkı sabit bir değer değildir (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Önemli Formüller

Şimdi aritmetik ilerlemeyi kullanarak problemleri çözmek için ihtiyaç duyacağımız temel formülleri sunalım. a n sembolüyle gösterelim n'inci terim n'nin bir tam sayı olduğu diziler. Farkı Latin harfi d ile belirtiyoruz. O halde aşağıdaki ifadeler geçerlidir:

  1. N'inci terimin değerini belirlemek için aşağıdaki formül uygundur: a n = (n-1)*d+a 1 .
  2. İlk n terimin toplamını belirlemek için: S n = (a n +a 1)*n/2.

9. sınıftaki çözümlerle ilgili herhangi bir aritmetik ilerleme örneğini anlamak için, bu iki formülü hatırlamak yeterlidir, çünkü söz konusu türdeki herhangi bir problem bunların kullanımına dayanmaktadır. İlerleme farkının şu formülle belirlendiğini de unutmamalısınız: d = a n - a n-1.

Örnek 1: Bilinmeyen bir terimi bulma

Aritmetik ilerlemeye ve onu çözmek için kullanılması gereken formüllere basit bir örnek verelim.

10, 8, 6, 4, ... dizisi verilsin, içinde beş terim bulmanız gerekiyor.

Problemin koşullarından ilk 4 terimin zaten bilindiği sonucu çıkıyor. Beşincisi iki şekilde tanımlanabilir:

  1. Önce farkı hesaplayalım. Elimizde: d = 8 - 10 = -2. Benzer şekilde, yan yana duran herhangi iki üyeyi de alabilirsiniz. Örneğin d = 4 - 6 = -2. D = a n - a n-1 olduğu bilindiğinden, d = a 5 - a 4 olur ve bundan şunu elde ederiz: a 5 = a 4 + d. Bilinen değerleri yerine koyarız: a 5 = 4 + (-2) = 2.
  2. İkinci yöntem de söz konusu ilerlemenin farkının bilinmesini gerektirir, bu nedenle öncelikle bunu yukarıda gösterildiği gibi belirlemeniz gerekir (d = -2). İlk terimin a 1 = 10 olduğunu bilerek dizinin n sayısı için formülü kullanıyoruz. Elimizde: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Son ifadede n = 5'i yerine koyarsak şunu elde ederiz: a 5 = 12-2 * 5 = 2.

Gördüğünüz gibi her iki çözüm de aynı sonuca yol açtı. Bu örnekte ilerleme farkı d'nin negatif bir değer olduğuna dikkat edin. Bu tür dizilere azalan diziler denir, çünkü sonraki her terim bir öncekinden daha küçüktür.

Örnek #2: ilerleme farkı

Şimdi görevi biraz karmaşıklaştıralım, nasıl yapıldığına dair bir örnek verelim

Bazılarında 1. terimin 6'ya, 7. terimin ise 18'e eşit olduğu bilinmektedir. Farkı bulup bu diziyi 7. terime geri döndürmek gerekir.

Bilinmeyen terimi belirlemek için şu formülü kullanalım: a n = (n - 1) * d + a 1 . Koşuldan bilinen verileri, yani a 1 ve a 7 sayılarını yerine koyalım: 18 = 6 + 6 * d. Bu ifadeden farkı kolayca hesaplayabilirsiniz: d = (18 - 6) /6 = 2. Böylece problemin ilk kısmını cevaplamış olduk.

Diziyi 7. terime geri döndürmek için cebirsel ilerlemenin tanımını kullanmalısınız, yani a 2 = a 1 + d, a 3 = a 2 + d vb. Sonuç olarak tüm diziyi geri yükleriz: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

Örnek No. 3: bir ilerlemenin hazırlanması

Sorunu daha da karmaşık hale getirelim. Şimdi aritmetik ilerlemenin nasıl bulunacağı sorusunu cevaplamamız gerekiyor. Şu örneği verebiliriz: İki sayı veriliyor örneğin - 4 ve 5. Bunların arasına üç terim daha yerleştirilecek şekilde cebirsel bir ilerleme oluşturmak gerekiyor.

Bu sorunu çözmeye başlamadan önce, verilen sayıların gelecekteki ilerlemede nasıl bir yer tutacağını anlamalısınız. Aralarında üç terim daha olacağı için a 1 = -4 ve a 5 = 5 olur. Bunu belirledikten sonra bir öncekine benzer probleme geçiyoruz. Yine formülü kullandığımız n'inci terim için şunu elde ederiz: a 5 = a 1 + 4 * d. Başlangıç: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Burada elde ettiğimiz şey farkın tam sayı değeri değil, rasyonel bir sayıdır, dolayısıyla cebirsel ilerlemenin formülleri aynı kalır.

Şimdi bulunan farkı 1'e ekleyelim ve ilerlemenin eksik terimlerini geri yükleyelim. Şunu elde ederiz: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, bunlar çakışıyor Sorunun koşulları ile.

Örnek No. 4: ilerlemenin ilk dönemi

Çözümlü aritmetik ilerleme örnekleri vermeye devam edelim. Önceki problemlerin hepsinde cebirsel ilerlemenin ilk sayısı biliniyordu. Şimdi farklı türde bir problem düşünelim: a 15 = 50 ve a 43 = 37 olmak üzere iki sayı verilsin. Bu dizinin hangi sayıyla başladığını bulmak gerekiyor.

Şu ana kadar kullanılan formüller a 1 ve d'nin bilgisini varsaymaktadır. Problem ifadesinde bu sayılar hakkında hiçbir şey bilinmemektedir. Bununla birlikte, hakkında bilgi bulunan her terim için ifadeleri yazacağız: a 15 = a 1 + 14 * d ve a 43 = a 1 + 42 * d. 2 bilinmeyen miktarın (a 1 ve d) olduğu iki denklem aldık. Bu, problemin bir doğrusal denklem sisteminin çözümüne indirgendiği anlamına gelir.

Bu sistemi çözmenin en kolay yolu, her denklemde 1'i ifade etmek ve ardından elde edilen ifadeleri karşılaştırmaktır. Birinci denklem: a 1 = a 15 - 14 * d = 50 - 14 * d; ikinci denklem: a 1 = a 43 - 42 * d = 37 - 42 * d. Bu ifadeleri eşitleyerek şunu elde ederiz: 50 - 14 * d = 37 - 42 * d, dolayısıyla fark d = (37 - 50) / (42 - 14) = - 0,464 (yalnızca 3 ondalık basamak verilmiştir).

D'yi bildiğinize göre, 1 için yukarıdaki 2 ifadeden herhangi birini kullanabilirsiniz. Örneğin ilk olarak: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Elde edilen sonuçtan şüpheniz varsa kontrol edebilirsiniz, örneğin durumda belirtilen ilerlemenin 43. dönemini belirleyebilirsiniz. Şunu elde ederiz: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Küçük hata, hesaplamalarda binde birine yuvarlamanın kullanılmasından kaynaklanmaktadır.

Örnek No. 5: tutar

Şimdi bir aritmetik ilerlemenin toplamının çözümlerini içeren birkaç örneğe bakalım.

Verilmesine izin ver sayısal ilerleme aşağıdaki biçimdedir: 1, 2, 3, 4, ...,. Bu sayıların 100'ünün toplamı nasıl hesaplanır?

Bilgisayar teknolojisinin gelişmesi sayesinde bu sorunu çözmek, yani tüm sayıları sırayla eklemek mümkündür; kişi Enter tuşuna bastığı anda bilgisayarın yapacağı bunu yapar. Ancak sunulan sayı serisinin cebirsel bir ilerleme olduğuna ve farkının 1'e eşit olduğuna dikkat ederseniz sorun zihinsel olarak çözülebilir. Toplam formülünü uygulayarak şunu elde ederiz: S n = n * ( a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Bu problemin “Gaussian” olarak adlandırılması ilginçtir çünkü 18. yüzyılın başında, henüz 10 yaşında olan ünlü Alman, bu problemi birkaç saniye içinde kafasında çözebilmiştir. Çocuk cebirsel ilerlemenin toplamının formülünü bilmiyordu ama dizinin sonundaki sayıları çiftler halinde toplarsanız her zaman aynı sonucu elde ettiğinizi fark etti: 1 + 100 = 2 + 99 = 3 + 98 = ... ve bu toplamlar tam olarak 50 (100/2) olacağından doğru cevabı almak için 50'yi 101 ile çarpmak yeterlidir.

Örnek No. 6: n'den m'ye kadar terimlerin toplamı

Aritmetik ilerlemenin toplamının bir başka tipik örneği şudur: 3, 7, 11, 15, ... gibi bir sayı dizisi verildiğinde, 8'den 14'e kadar olan terimlerin toplamının neye eşit olacağını bulmanız gerekir. .

Sorun iki şekilde çözülür. Bunlardan ilki, 8'den 14'e kadar bilinmeyen terimleri bulmayı ve ardından bunları sırayla toplamayı içerir. Terim sayısı az olduğundan bu yöntem pek emek yoğun değildir. Bununla birlikte, bu sorunun daha evrensel olan ikinci bir yöntemle çözülmesi önerilmektedir.

Buradaki fikir, n > m'nin tamsayı olduğu m ve n terimleri arasındaki cebirsel ilerlemenin toplamı için bir formül elde etmektir. Her iki durumda da toplam için iki ifade yazıyoruz:

  1. S m = m * (bir m + bir 1) / 2.
  2. S n = n * (bir n + bir 1) / 2.

n > m olduğundan 2. toplamın birinciyi içerdiği açıktır. Son sonuç, bu toplamlar arasındaki farkı alıp buna a m terimini eklersek (farkın alınması durumunda S n toplamından çıkarılır), probleme gerekli cevabı elde edeceğimiz anlamına gelir. Elimizde: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). Bu ifadede a n ve a m formüllerini yerine koymak gerekir. O zaman şunu elde ederiz: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Ortaya çıkan formül biraz hantaldır, ancak S mn toplamı yalnızca n, m, a 1 ve d'ye bağlıdır. Bizim durumumuzda a 1 = 3, d = 4, n = 14, m = 8. Bu sayıları yerine koyarsak şunu elde ederiz: S mn = 301.

Yukarıdaki çözümlerden de görülebileceği gibi, tüm problemler n'inci terimin ifadesi ve ilk terimler kümesinin toplamı formülü bilgisine dayanmaktadır. Bu sorunlardan herhangi birini çözmeye başlamadan önce, durumu dikkatlice okumanız, neyi bulmanız gerektiğini açıkça anlamanız ve ancak o zaman çözüme devam etmeniz önerilir.

Başka bir ipucu da basitlik için çabalamaktır, yani bir soruyu karmaşık matematiksel hesaplamalar kullanmadan cevaplayabiliyorsanız, o zaman tam da bunu yapmanız gerekir, çünkü bu durumda hata yapma olasılığı daha azdır. Örneğin, 6 numaralı çözümle aritmetik ilerleme örneğinde, S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m formülünde durabiliriz ve kırmak ortak görev ayrı alt görevlere ayırın (bu durumda önce a n ve a m terimlerini bulun).

Elde edilen sonuç hakkında şüpheleriniz varsa, verilen bazı örneklerde yapıldığı gibi kontrol etmeniz önerilir. Aritmetik ilerlemeyi nasıl bulacağımızı öğrendik. Bunu anlarsanız, o kadar da zor değil.

Ne asıl nokta formüller?

Bu formül bulmanızı sağlar herhangi NUMARASIYLA " N" .

Elbette ilk terimi de bilmeniz gerekir. 1 ve ilerleme farkı D, bu parametreler olmadan belirli bir ilerlemeyi yazamazsınız.

Bu formülü ezberlemek (veya not etmek) yeterli değildir. Bunun özünü anlamanız ve formülü çeşitli problemlere uygulamanız gerekir. Ve ayrıca doğru zamanda unutmamak gerekir, evet...) Nasıl unutma- Bilmiyorum. Ancak nasıl hatırlanır Gerekirse size mutlaka tavsiyede bulunacağım. Dersi sonuna kadar tamamlayanlar için.)

Şimdi aritmetik ilerlemenin n'inci teriminin formülüne bakalım.

Genel olarak formül nedir? Bu arada okumadıysanız bir göz atın. Orada her şey basit. Ne olduğunu anlamaya devam ediyor n'inci dönem.

İlerleme genel görünüm bir sayı dizisi olarak yazılabilir:

bir 1, bir 2, bir 3, bir 4, bir 5, .....

1- aritmetik ilerlemenin ilk terimini belirtir, 3- üçüncü üye, 4- dördüncü vb. Beşinci dönemle ilgileniyorsak diyelim ki çalışıyoruz. 5, eğer yüz yirminci - s 120.

Genel hatlarıyla nasıl tanımlayabiliriz? herhangi aritmetik ilerleme terimi, herhangi sayı? Çok basit! Bunun gibi:

BİR

işte bu Bir aritmetik ilerlemenin n'inci terimi. N harfi tüm üye numaralarını aynı anda gizler: 1, 2, 3, 4 vb.

Peki böyle bir kayıt bize ne veriyor? Düşünün, sayı yerine mektup yazdılar...

Bu gösterim bize aritmetik ilerlemeyle çalışmak için güçlü bir araç sağlar. Gösterimi kullanma BİR, hızlı bir şekilde bulabiliriz herhangiüye herhangi aritmetik ilerleme. Ve bir sürü başka ilerleme problemini çözün. Daha fazlasını kendiniz göreceksiniz.

Aritmetik ilerlemenin n'inci terimi formülünde:

a n = a 1 + (n-1)d

1- aritmetik ilerlemenin ilk terimi;

N- üye numarası.

Formül, herhangi bir ilerlemenin temel parametrelerini birbirine bağlar: BİR ; bir 1; D Ve N. Tüm ilerleme sorunları bu parametreler etrafında döner.

N'inci terim formülü ayrıca belirli bir ilerlemeyi yazmak için de kullanılabilir. Örneğin problem, ilerlemenin koşul tarafından belirtildiğini söyleyebilir:

a n = 5 + (n-1) 2.

Böyle bir sorun çıkmaz sokak olabilir... Ne bir seri ne de bir fark vardır... Ama durumu formülle karşılaştırınca bu ilerlemede bunu anlamak kolaydır. a 1 =5 ve d=2.

Hatta daha da kötüsü olabilir!) Aynı koşulu alırsak: a n = 5 + (n-1) 2, Evet, parantezleri açıp benzerlerini getirir misiniz? Yeni bir formül elde ediyoruz:

bir n = 3 + 2n.

Bu Sadece genel değil, belirli bir ilerleme için. İşte tuzak burada gizleniyor. Bazıları ilk terimin üç olduğunu düşünüyor. Gerçekte ilk terim beş olmasına rağmen... Biraz daha düşük, böyle değiştirilmiş bir formülle çalışacağız.

İlerleme problemlerinde başka bir gösterim daha var - bir n+1. Bu, tahmin ettiğiniz gibi ilerlemenin “n artı ilk” terimidir. Anlamı basit ve zararsızdır.) Bu, sayısı n sayısından bir büyük olan dizinin bir üyesidir. Örneğin, eğer bir problemde alırsak BİR o zaman beşinci dönem bir n+1 altıncı üye olacak. Ve benzeri.

Çoğu zaman atama bir n+1 yineleme formüllerinde bulunur. Bu korkutucu kelimeden korkmayın!) Bu sadece aritmetik ilerlemenin bir üyesini ifade etmenin bir yoludur bir önceki aracılığıyla. Tekrarlanan bir formül kullanılarak bize bu biçimde bir aritmetik ilerleme verildiğini varsayalım:

bir n+1 = bir n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Dördüncüden üçüncüye, beşinciden dördüncüye vb. Mesela yirminci terimi hemen nasıl sayabiliriz? 20? Ama mümkün değil!) 19. dönemi bulana kadar 20. dönemi sayamayız. Tekrarlayan formül ile n'inci terimin formülü arasındaki temel fark budur. Tekrarlanan işler yalnızca aracılığıyla öncesi terim ve n'inci terimin formülü Birinci ve izin verir hemen herhangi bir üyeyi numarasına göre bulun. Tüm sayı dizisini sırayla hesaplamadan.

Aritmetik ilerlemede tekrarlanan bir formülü düzenli bir formüle dönüştürmek kolaydır. Bir çift ardışık terimi sayın, farkı hesaplayın D, gerekirse ilk terimi bulun 1, formülü her zamanki biçiminde yazın ve onunla çalışın. Bu tür görevlere Devlet Bilimler Akademisi'nde sıklıkla rastlanmaktadır.

Bir aritmetik ilerlemenin n'inci terimi için formülün uygulanması.

Öncelikle formülün doğrudan uygulamasına bakalım. Önceki dersin sonunda bir sorun vardı:

Aritmetik ilerleme (a n) verilmiştir. a 1 =3 ve d=1/6 ise 121'i bulun.

Bu problem herhangi bir formül olmadan, sadece aritmetik ilerlemenin anlamına dayanarak çözülebilir. Ekle ve ekle... Bir veya iki saat.)

Ve formüle göre çözüm bir dakikadan az sürecek. Zamanlamasını ayarlayabilirsiniz.) Hadi karar verelim.

Koşullar formülün kullanılmasına ilişkin tüm verileri sağlar: a 1 =3, d=1/6. Neyin eşit olduğunu bulmaya devam ediyor N. Soru yok! bulmamız lazım 121. O halde şunu yazıyoruz:

Lütfen dikkat edin! Bir indeks yerine N belirli bir sayı ortaya çıktı: 121. Bu oldukça mantıklı.) Aritmetik ilerlemenin üyesiyle ilgileniyoruz yüz yirmi bir numara. Bu bizim olacak N. anlamı bu N= 121'i formülde parantez içinde değiştireceğiz. Tüm sayıları formülde yerine koyarız ve hesaplarız:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

İşte bu. Beş yüz onuncu terimi ve bin üçüncü terimi de aynı hızla bulabiliriz. Onun yerine koyduk N" harfinin dizininde istenen sayı A" ve parantez içinde sayıyoruz.

Size şunu hatırlatmama izin verin: Bu formül bulmanızı sağlar herhangi aritmetik ilerleme terimi NUMARASIYLA " N" .

Sorunu daha kurnaz bir şekilde çözelim. Aşağıdaki sorunla karşılaşalım:

a 17 =-2 ise, aritmetik ilerlemenin ilk terimini (a n) bulun; d=-0,5.

Herhangi bir zorlukla karşılaşırsanız size ilk adımı anlatacağım. Aritmetik ilerlemenin n'inci teriminin formülünü yazın! Evet, evet. Ellerinizle doğrudan not defterinize yazın:

a n = a 1 + (n-1)d

Ve şimdi formülün harflerine baktığımızda hangi verilere sahip olduğumuzu ve neyin eksik olduğunu anlıyoruz? Mevcut d=-0,5, on yedinci bir üye var... Öyle mi? Eğer böyle düşünürsen sorunu çözemezsin, evet...

Hala bir numaramız var N! Durumda a 17 =-2 gizlenmiş iki parametre. Bu hem on yedinci terimin değeri (-2) hem de sayısıdır (17). Onlar. n=17. Bu "önemsiz şey" çoğu zaman kafanın yanından geçer ve o olmadan ("önemsiz" olmadan, kafa değil!) sorun çözülemez. Yine de... ve kafasız da.)

Artık verilerimizi aptalca bir şekilde formüle koyabiliriz:

a 17 = a 1 + (17-1)·(-0,5)

Ah evet, 17-2 olduğunu biliyoruz. Tamam, yerine koyalım:

-2 = a 1 + (17-1)·(-0,5)

Temelde hepsi bu. Geriye formülden aritmetik ilerlemenin ilk terimini ifade etmek ve hesaplamak kalıyor. Cevap şöyle olacaktır: 1 = 6.

Bir formül yazmak ve bilinen verileri basitçe yerine koymaktan oluşan bu teknik, basit görevlerde çok yardımcı olur. Elbette bir değişkeni formülden ifade edebilmeniz gerekiyor ama ne yapmalısınız? Bu beceri olmadan matematik hiç çalışılmayabilir...

Bir başka popüler bulmaca:

a 1 =2 ise, aritmetik ilerlemenin (a n) farkını bulun; 15 =12.

Ne yapıyoruz? Şaşıracaksınız, formülü yazıyoruz!)

a n = a 1 + (n-1)d

Bildiklerimizi düşünelim: a 1 =2; a 15 =12; ve (özellikle vurgulayacağım!) n=15. Bunu formülde değiştirmekten çekinmeyin:

12=2 + (15-1)d

Aritmetik yapıyoruz.)

12=2 + 14d

D=10/14 = 5/7

Bu doğru cevaptır.

Yani, görevler bir n, bir 1 Ve D karar verilmiş. Geriye kalan tek şey numarayı nasıl bulacağınızı öğrenmek:

99 sayısı aritmetik ilerlemenin (an) bir üyesidir; burada a 1 =12; d=3. Bu üyenin numarasını bulun.

Bildiğimiz miktarları n'inci terimin formülüne koyarız:

a n = 12 + (n-1) 3

İlk bakışta burada bilinmeyen iki büyüklük var: bir n ve n. Ancak BİR- bu bir sayı ile ilerlemenin bir üyesidir N...Ve ilerlemenin bu üyesini tanıyoruz! 99. Numarasını bilmiyoruz. N, Yani bulmanız gereken şey bu sayıdır. 99 ilerlemesinin terimini formülde değiştiririz:

99 = 12 + (n-1)3

Formülden ifade ediyoruz N, düşünüyoruz. Cevabını alıyoruz: n=30.

Şimdi de aynı konuyla ilgili bir problem ama daha yaratıcı):

117 sayısının aritmetik ilerlemenin (a n) bir üyesi olup olmadığını belirleyin:

-3,6; -2,4; -1,2 ...

Formülü tekrar yazalım. Ne, hiç parametre yok mu? Hım... Bize neden göz veriliyor?) İlerlemenin ilk dönemini görüyor muyuz? Görüyoruz. Bu -3.6. Güvenle yazabilirsiniz: 1 = -3,6. Fark D Diziden anlayabilir misiniz? Aritmetik ilerlemenin farkının ne olduğunu biliyorsanız bunu yapmak kolaydır:

d = -2,4 - (-3,6) = 1,2

Yani en basit şeyi yaptık. Geriye kalan tek şey bilinmeyen numarayla uğraşmak N ve anlaşılmaz sayı olan 117. Bir önceki problemde en azından verilen ilerlemenin terimi olduğu biliniyordu. Ama burada onu bile bilmiyoruz... Ne yapmalı!? Peki ne yapmalı, ne yapmalı... Aç yaratıcılık!)

Biz sanmak sonuçta 117 bizim ilerleyişimizin bir üyesi. Bilinmeyen bir numarayla N. Ve tıpkı önceki problemde olduğu gibi bu sayıyı bulmaya çalışalım. Onlar. formülü yazıyoruz (evet, evet!) ve sayılarımızı değiştiriyoruz:

117 = -3,6 + (n-1) 1,2

Yine formülden ifade ediyoruzN, sayarız ve şunu elde ederiz:

Hata! Sayı ortaya çıktı kesirli! Yüz bir buçuk. Ve ilerlemelerdeki kesirli sayılar olmaz. Hangi sonuca varabiliriz? Evet! 117 numara değil ilerlememizin bir üyesi. Yüz birinci terim ile yüz ikinci terim arasında bir yerdedir. Sayı doğal çıkarsa, yani. pozitif bir tam sayı ise sayı, bulunan sayı ile ilerlemenin bir üyesi olacaktır. Ve bizim durumumuzda sorunun cevabı şöyle olacaktır: HAYIR.

GIA'nın gerçek versiyonunu temel alan bir görev:

Aritmetik ilerleme şu koşulla verilir:

a n = -4 + 6,8n

İlerlemenin birinci ve onuncu terimlerini bulun.

Burada ilerleme alışılmadık bir şekilde ayarlanıyor. Bir çeşit formül... Olur.) Ancak bu formül (yukarıda yazdığım gibi) - ayrıca bir aritmetik ilerlemenin n'inci teriminin formülü! O da izin veriyor ilerlemenin herhangi bir üyesini numarasına göre bulun.

İlk üyeyi arıyoruz. Düşünen kişi. ilk terimin eksi dört olması büyük bir yanılgıdır!) Çünkü problemdeki formül değiştirildi. Aritmetik ilerlemenin ilk terimi gizlenmiş. Sorun değil, şimdi bulacağız.)

Daha önceki problemlerde olduğu gibi yerine n=1 bu formüle:

a 1 = -4 + 6,8 1 = 2,8

Burada! İlk terim -4 değil 2,8!

Onuncu terimi de aynı şekilde arıyoruz:

a 10 = -4 + 6,8 10 = 64

İşte bu.

Ve şimdi bu satırları okuyanlar için vaat edilen bonus.)

Diyelim ki zorlu bir savaş durumunda, Devlet Muayenesi veya Birleşik Devlet Muayenesi'ni unuttunuz faydalı formül Bir aritmetik ilerlemenin n'inci terimi. Bir şey hatırlıyorum ama bir şekilde emin olamıyorum... Veya N orada veya n+1 veya n-1... Nasıl olunur?

Sakinlik! Bu formülün türetilmesi kolaydır. Çok katı değil ama güven ve doğru karar için kesinlikle yeterli!) Bir sonuca varmak için aritmetik ilerlemenin temel anlamını hatırlamak ve birkaç dakika zaman ayırmak yeterlidir. Sadece bir resim çizmeniz yeterli. Netlik için.

Bir sayı doğrusu çizin ve ilkini işaretleyin. ikinci, üçüncü vb. üyeler. Ve farkı not ediyoruz Düyeler arasında. Bunun gibi:

Resme bakıyoruz ve düşünüyoruz: İkinci terim neye eşittir? Saniye bir D:

A 2 =a 1 + 1 D

Üçüncü terim nedir? Üçüncü terim ilk terimin artısına eşittir iki D.

A 3 =a 1 + 2 D

Anladın mı? Bazı kelimeleri kalın harflerle vurgulamam boşuna değil. Tamam, bir adım daha).

Dördüncü terim nedir? Dördüncü terim ilk terimin artısına eşittir üç D.

A 4 =a 1 + 3 D

Boşlukların sayısının, yani. D, Her zaman Aradığınız üye sayısından bir eksik N. Yani sayıya n, boşluk sayısı irade n-1. Bu nedenle formül şu şekilde olacaktır (değişiklikler olmadan!):

a n = a 1 + (n-1)d

Genel olarak görsel resimler matematikteki birçok problemin çözümünde oldukça faydalıdır. Resimleri ihmal etmeyin. Ancak bir resim çizmek zorsa, o zaman... sadece bir formül!) Ek olarak, n'inci terimin formülü, matematiğin tüm güçlü cephaneliğini çözüme - denklemler, eşitsizlikler, sistemler vb. - bağlamanıza olanak tanır. Denkleme resim ekleyemezsiniz...

Bağımsız çözüm için görevler.

Isınmak için:

1. Aritmetik ilerlemede (a n) a 2 =3; a 5 =5,1. 3'ü bulun.

İpucu: Resme göre sorun 20 saniyede çözülebilir... Formüle göre daha zor çıkıyor. Ancak formüle hakim olmak için daha kullanışlıdır.) Bölüm 555'te bu sorun hem resim hem de formül kullanılarak çözülmektedir. Farkı hissedin!)

Ve bu artık bir ısınma değil.)

2. Aritmetik ilerlemede (an) a 85 =19,1; a 236 =49, 3. a 3'ü bulun.

Ne, resim çizmek istemiyor musun?) Elbette! Formüle göre daha iyi, evet...

3. Aritmetik ilerleme şu koşulla verilir:a 1 = -5,5; a n+1 = a n +0,5. Bu ilerlemenin yüz yirmi beşinci terimini bulun.

Bu görevde ilerleme yinelenen bir şekilde belirtilir. Ama yüz yirmi beşinci döneme kadar sayarsak... Herkes böyle bir başarıya sahip değildir.) Ama n'inci dönemin formülü herkesin gücündedir!

4. Aritmetik ilerleme (a n) verildiğinde:

-148; -143,8; -139,6; -135,4, .....

İlerlemenin en küçük pozitif teriminin sayısını bulun.

5. Görev 4'ün koşullarına göre ilerlemenin en küçük pozitif ve en büyük negatif terimlerinin toplamını bulun.

6. Artan aritmetik ilerlemenin beşinci ve on ikinci terimlerinin çarpımı -2,5'e, üçüncü ve on birinci terimlerin toplamı ise sıfıra eşittir. 14'ü bulun.

En kolay iş değil evet...) “Parmak ucu” yöntemi burada işe yaramayacak. Formüller yazmanız ve denklemleri çözmeniz gerekecek.

Cevaplar (karışıklık içinde):

3,7; 3,5; 2,2; 37; 2,7; 56,5

İşe yaradı mı? Çok hoş!)

Her şey yolunda gitmiyor mu? Olur. Bu arada son görevde ince bir nokta var. Sorunu okurken dikkatli olunması gerekecektir. Ve mantık.

Tüm bu sorunların çözümü Bölüm 555'te ayrıntılı olarak tartışılmaktadır. Dördüncüsü için fantezi unsuru, altıncısı için ince nokta ve n'inci terimin formülünü içeren herhangi bir problemin çözümü için genel yaklaşımlar - her şey anlatılmıştır. Tavsiye ederim.

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

Bazı insanlar "ilerleme" sözcüğünü çok ihtiyatlı bir şekilde ele alıyorlar. karmaşık terim bölümlerden yüksek matematik. Bu arada, en basit aritmetik ilerleme taksi sayacının (hala mevcut oldukları yerde) çalışmasıdır. Ve bir aritmetik dizinin özünü anlamak (ve matematikte "özünü elde etmekten" daha önemli bir şey yoktur), birkaç temel kavramı analiz ettikten sonra o kadar da zor değildir.

Matematiksel sayı dizisi

Sayısal diziye genellikle her biri kendi numarasına sahip olan bir sayı dizisi denir.

a 1 dizinin ilk üyesidir;

ve 2, dizinin ikinci terimidir;

ve 7, dizinin yedinci üyesidir;

ve n, dizinin n'inci üyesidir;

Ancak herhangi bir keyfi sayı ve sayı dizisi bizi ilgilendirmiyor. Dikkatimizi, n'inci terimin değerinin matematiksel olarak açıkça formüle edilebilecek bir ilişki yoluyla sıra numarasıyla ilişkilendirildiği sayısal diziye odaklayacağız. Başka bir deyişle: sayısal değer N'inci sayı, n'nin bir fonksiyonudur.

a, sayısal bir dizinin bir üyesinin değeridir;

n seri numarasıdır;

f(n), n sayısal dizisindeki sıra numarasının argüman olduğu bir fonksiyondur.

Tanım

Aritmetik ilerlemeye genellikle birbirini takip eden her terimin bir öncekinden aynı sayı kadar büyük (küçük) olduğu sayısal dizi denir. Bir aritmetik dizinin n'inci teriminin formülü aşağıdaki gibidir:

a n - aritmetik ilerlemenin mevcut üyesinin değeri;

bir n+1 - sonraki sayının formülü;

d - fark (belirli bir sayı).

Farkın pozitif olması durumunda (d>0), söz konusu serinin her bir sonraki üyesinin bir öncekinden daha büyük olacağını ve bu tür bir aritmetik ilerlemenin artacağını belirlemek kolaydır.

Aşağıdaki grafikte nedenini görmek kolaydır sayı dizisi"artan" denir.

Farkın negatif olduğu durumlarda (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Belirtilen üye değeri

Bazen bir aritmetik ilerlemenin herhangi bir rastgele teriminin (n) değerini belirlemek gerekir. Bu, ilkinden istenilene kadar aritmetik ilerlemenin tüm üyelerinin değerlerinin sırayla hesaplanmasıyla yapılabilir. Ancak örneğin beş bininci veya sekiz milyonuncu terimin değerini bulmak gerekiyorsa bu yol her zaman kabul edilebilir değildir. Geleneksel hesaplamalar çok zaman alacaktır. Ancak belirli formüller kullanılarak belirli bir aritmetik ilerleme incelenebilir. Ayrıca n'inci terim için de bir formül vardır: Bir aritmetik ilerlemenin herhangi bir teriminin değeri, ilerlemenin ilk teriminin ilerlemenin farkıyla toplamının istenen terimin sayısıyla çarpımı ve eksiltilmesiyle belirlenebilir. bir.

Formül, ilerlemeyi artırmak ve azaltmak için evrenseldir.

Belirli bir terimin değerini hesaplamaya bir örnek

Bir aritmetik ilerlemenin n'inci teriminin değerini bulmayla ilgili aşağıdaki problemi çözelim.

Durum: parametrelerle aritmetik bir ilerleme var:

Dizinin ilk terimi 3'tür;

Sayı serisindeki fark 1,2'dir.

Görev: 214 terimin değerini bulmanız gerekiyor

Çözüm: Belirli bir terimin değerini belirlemek için aşağıdaki formülü kullanırız:

a(n) = a1 + d(n-1)

Sorun ifadesindeki verileri ifadeye koyarsak:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Cevap: Dizinin 214. terimi 258,6'ya eşittir.

Bu hesaplama yönteminin avantajları açıktır - çözümün tamamı 2 satırdan fazla sürmez.

Belirli sayıda terimin toplamı

Çoğu zaman, belirli bir aritmetik seride, bazı bölümlerinin değerlerinin toplamını belirlemek gerekir. Bunu yapmak için her terimin değerlerini hesaplayıp daha sonra toplamaya da gerek yoktur. Toplamı bulunması gereken terim sayısının az olması durumunda bu yöntem uygulanabilir. Diğer durumlarda aşağıdaki formülü kullanmak daha uygundur.

1'den n'ye bir aritmetik ilerlemenin terimlerinin toplamı, birinci ve n'inci terimlerin toplamına eşittir, n terimi sayısıyla çarpılır ve ikiye bölünür. Formülde n'inci terimin değeri makalenin önceki paragrafındaki ifadeyle değiştirilirse şunu elde ederiz:

Hesaplama örneği

Örneğin, aşağıdaki koşullarla ilgili bir problemi çözelim:

Dizinin ilk terimi sıfırdır;

Fark 0,5.

Problem 56'dan 101'e kadar olan serinin terimlerinin toplamının belirlenmesini gerektirmektedir.

Çözüm. İlerleme miktarını belirlemek için formülü kullanalım:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Öncelikle problemimizin verilen koşullarını formülde yerine koyarak ilerlemenin 101 teriminin değerlerinin toplamını belirliyoruz:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2,525

Açıkçası, 56. sıradan 101. sıraya ilerlemenin terimlerinin toplamını bulmak için S 101'den S 55'i çıkarmak gerekir.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Dolayısıyla, bu örnek için aritmetik ilerlemenin toplamı şöyledir:

sn 101 - sn 55 = 2.525 - 742,5 = 1.782,5

Aritmetik ilerlemenin pratik uygulamasına örnek

Makalenin sonunda, ilk paragrafta verilen aritmetik dizi örneğine - taksimetreye (taksi araba sayacı) dönelim. Bu örneği ele alalım.

Taksiye binmek (3 km'lik seyahat dahil) 50 rubleye mal oluyor. Sonraki her kilometre için 22 ruble/km oranında ödeme yapılır. Seyahat mesafesi 30 km'dir. Yolculuğun maliyetini hesaplayın.

1. İniş ücretine dahil olan ilk 3 km’yi atalım.

30 - 3 = 27 km.

2. Daha fazla hesaplama, bir aritmetik sayı serisinin ayrıştırılmasından başka bir şey değildir.

Üye numarası - kat edilen kilometre sayısı (ilk üç eksi).

Üyenin değeri toplamdır.

Bu problemdeki ilk terim 1 = 50 rubleye eşit olacaktır.

İlerleme farkı d = 22 r.

ilgilendiğimiz sayı aritmetik ilerlemenin (27+1)'inci teriminin değeridir - 27. kilometrenin sonundaki sayaç okuması 27.999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

İsteğe bağlı olarak uzun bir süre için takvim verileri hesaplamaları, belirli sayısal dizileri açıklayan formüllere dayanmaktadır. Astronomide yörüngenin uzunluğu geometrik olarak gök cisminin yıldıza olan uzaklığına bağlıdır. Ayrıca çeşitli sayı serileri istatistikte ve matematiğin diğer uygulamalı alanlarında başarıyla kullanılmaktadır.

Başka bir sayı dizisi türü geometriktir

Geometrik ilerleme, aritmetik ilerlemeye kıyasla daha yüksek değişim oranlarıyla karakterize edilir. Politikada, sosyolojide ve tıpta, belirli bir olgunun, örneğin bir salgın sırasındaki bir hastalığın yüksek yayılma hızını göstermek için, sürecin geometrik ilerlemeyle geliştiğini sıklıkla söylemeleri tesadüf değildir.

Geometrik sayı serisinin N'inci terimi, bazı sabit sayılarla çarpılması bakımından öncekinden farklıdır - payda, örneğin, ilk terim 1'dir, payda buna karşılık olarak 2'ye eşittir, o zaman:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - geometrik ilerlemenin mevcut teriminin değeri;

b n+1 - geometrik ilerlemenin bir sonraki teriminin formülü;

q geometrik ilerlemenin paydasıdır (sabit bir sayı).

Aritmetik ilerlemenin grafiği düz bir çizgi ise, geometrik ilerleme biraz farklı bir tablo çizer:

Aritmetikte olduğu gibi geometrik ilerlemenin de keyfi bir terimin değeri için bir formülü vardır. Geometrik ilerlemenin herhangi bir n'inci terimi, ilk terimin çarpımına ve n'nin kuvvetine doğru ilerlemenin paydasının bir eksiltilmesine eşittir:

Örnek. İlk terimi 3'e ve ilerlemenin paydası 1,5'e eşit olan geometrik bir ilerlememiz var. İlerlemenin 5. terimini bulalım

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Belirli sayıda terimin toplamı da özel bir formül kullanılarak hesaplanır. Bir geometrik ilerlemenin ilk n teriminin toplamı, ilerlemenin n'inci teriminin çarpımı ile paydası ile ilerlemenin ilk terimi arasındaki farkın paydanın bir eksiltilmesiyle bölünmesine eşittir:

Yukarıda tartışılan formül kullanılarak b n değiştirilirse, söz konusu sayı serisinin ilk n teriminin toplamının değeri şu şekli alacaktır:

Örnek. Geometrik ilerleme ilk terimin 1'e eşit olmasıyla başlar. Payda 3'tür. İlk sekiz terimin toplamını bulalım.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280