Аэробное окисление углеводов. Дыхание микробов

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

« Аэробное окисление углеводов. Биологическое окисление и восстановление»

МИНСК, 2008


Аэробное окисление углеводов - основной путь образования энергии для организма. Непрямой - дихотомический и прямой - апотомический.

Прямой путь распада глюкозы – пентозный цикл – приводит к образованию пентоз и накоплению НАДФН 2 . Пентозный цикл характеризуется последовательным отщеплением от молекул глюкозы каждого из ее 6 атомов углерода с образованием в течение одного цикла по 1 молекуле углекислого газа и воды. Распад всей молекулы глюкозы происходит в течение 6 повторяющихся циклов.

Значение пентозофосфатного цикла окисления углеводов в обмене веществ велико:

1. Он поставляет восстановленный НАДФ, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счет пентозного цикла на 50% покрывается потребность организма в НАДФН 2 .

2. Поставка пентозофосфатов для синтеза нуклеиновых кислот и многих коферментов.

Реакции пентозного цикла протекают в цитоплазме клетки.

При ряде патологических состояний удельный вес пентозного пути окисления глюкозы возрастает.

Непрямой путь – распад глюкозы до углекислого газа и воды с образованием 36 молекул АТФ.

1. Распад глюкозы или гликогена до пировиноградной кислоты

2. Превращение пировиноградной кислоты в ацетил- КоА

Окисление ацетил-КоА в цикле Кребса до углекислого газа и воды

С 6 Н 12 О 6 + 6 О 2 ® 6 СО 2 + 6 Н 2 О + 686 ккал

В случае аэробного превращения пировиноградная кислота подвергается окислительному декарбоксилированию с образованием ацетил- КоА, который затем окисляется до углекислого газа и воды.

Окисление пирувата до ацетил-КоА, катализируется пируватдегидрогеназной системой и протекает в несколько стадий. Суммарно реакция:

Пируват + НАДН + НS-КоА ® ацетил- КоА+ НАДН 2 + СО 2 реакция практически необратима

Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот или цикле Кребса. Этот процесс протекает в митохондриях.

Цикл состоит из 8 последовательных реакций:

В этом цикле, молекула, содержащая 2 атома углерода (уксусная кислота в форме ацетил-КоА) реагирует с молекулой щавелевоуксусной кислоты, в результате чего образуется соединение с 6 атомами углерода – лимонная кислота. В процессе дегидрирования, декарбоксилирования и подготовительной реакции лимонная кислота вновь превращается в щавелевоуксусную кислоту, которая легко соединяется с другой молекулой ацетил- КоА.

1) ацетил-КоА + оксалоацетат (ЩУК) ®лимонная кислота

цитратсинтаза

2) лимонная кислота® изолимонная кислота

аконитатгидратаза

3)изолимонная к-та+НАД®a-кетоглутаровая к-та+НАДН 2 + СО 2

изоцитратдегидрогеназа

4)a-кетоглутаровая к-та+НS-КоА+НАД®сукцинилSКоА+НАДН 2 + СО 2

5) сукцинил-КоА+ГДФ+Фн®янтарная кислота+ГТФ+НS-КоА

сукцинил КоА синтетаза

6) янтарная кислота+ФАД®фумаровая кислота+ФАДН 2

сукцинатдегидрогеназа

7) фумаровая кислота+ Н 2 О® L яблочная кислота

фумаратгидратаза

8) малат+ НАД®оксалоацетат+ НАДН 2

малатдегидрогеназа

Итого при расщеплении в тканях молекулы глюкозы синтезируется 36 молекул АТФ. Несомненно, это в энергетическом отношении более эффективный процесс чем гликолиз.

Цикл Кребса – общий конечный путь, которым завершается обмен углеводов, жирных кислот и аминокислот. Все эти вещества включаются в цикл Кребса на том или другом этапе. Далее происходит биологическое окисление или тканевое дыхание, главной особенностью которого является то, что оно протекает постепенно, через многочисленные ферментативные стадии. Этот процесс происходит в митохондриях, клеточных органеллах, в которых сосредоточено большое количество ферментов. В процессе участвуют пиридинзависимые дегидрогеназы, флавинзависимые дегидрогеназы, цитохромы, коэнзим Q – убихинон, белки, содержащие негеминовое железо.

Интенсивность дыхания управляется соотношением АТФ/АДФ. Чем меньше это отношение, тем интенсивнее идет дыхание, обеспечивая выработку АТФ.

Также цикл лимонной кислоты является в клетке главным источником двуокиси углерода для реакций карбоксилирования, с которых начинается синтез жирных кислот и глюконеогенез. Та же двуокись углерода поставляет углерод для мочевины и некоторых звеньев пуриновых и пиримидиновых колец.

Взаимосвязь между процессами углеводного и азотистого обмена также достигаются посредством промежуточных продуктов цикла лимонной кислоты.

Существует несколько путей, по которым промежуточные продукты цикла лимонной кислоты включаются в процесс липогенеза. Расщепление цитрата приводит к образованию ацетил-КоА, играющего роль предшественника в биосинтезе жирных кислот.

Изоцитрат и малат обеспечивают образование НАДФ, который расходуется в последующих восстановительных этапах синтеза жиров.

Роль ключевого фактора, определяющего превращение НАДН играет состояние адениннуклеотидов. Высокое содержание АДФ и низкое АТФ свидетельствует о малом запасе энергии. При этом НАДН вовлекается в реакции дыхательной цепи, усиливая сопряженные с запасанием энергии процессы окислительного фосфорилирования. Обратное явление наблюдается при низком содержании АДФ и высоком АТФ. Ограничивая работу системы переноса электронов, они способствуют использованию НАДН в других восстановительных реакциях, таких как синтез глутамата и глюконеогенез.

Биологическое окисление и восстановление.

Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобождающаяся биологически полезная энергия запасается клеткой и затем используется. Многие ферменты, катализирующие эти реакции, находятся в стенках и кристах митохондрий.

Известно, что на все проявления жизни - рост, движение, раздражимость, самовоспроизведение - клетка должна затрачивать энергию. Все живые клетки получают биологически полезную энергию за счет ферментативных реакций, в ходе которых электроны переходят с одного энергетического уровня на другой. Для большинства организмов конечным акцептором электронов служит кислород, который реагируя с электронами и ионами ионами водорода образует молекулу воды. Передача электронов кислороду происходит при участии заключенной в митохондриях ферментной системы - системы переноса электронов. АТФ служит “энергетической валютой” клетки и используется во всех реакциях обмена, требующих затраты энергии. Богатые энергией молекулы не перемещаются свободно из одной клетки в другую, а образуются в том месте. где они должны быть использованы. Например, макроэргические связи АТФ, служащие источником энергии для реакций, связанных с мышечным сокращением, образуются в самих мышечных клетках.

Процесс, в котором атомы или молекулы теряют электроны (е -) называют окислением, а обратный процесс - добавление (присоединение) электронов к атому или молекуле - восстановлением.

Простым примером окисления и восстановления служит обратимая реакция - Fe 2+ ®Fe 3+ + e -

Реакция идущая вправо - окисление, отнятие электрона

Влево - восстановление (присоединение электрона)

Все окислительные реакции (при которых происходит отнятие электрона) должны сопровождаться восстановлением - реакцией в которой электроны захватываются какой-нибудь другой молекулой, т.к. они не существуют в свободном состоянии.

Передача электронов через систему переноса электронов происходит путем ряда последовательных реакций окисления-восстановления, которые в совокупности носят название биологического окисления. Если при этом энергия потока электронов накапливается в форме макроэргических фосфатных связей (~Ф), то процесс называется окислительным фосфорилированием. Специфические соединения, которые образуют систему переноса электронов и которые попеременно окисляются и восстанавливаются, называются цитохромами. Каждый из цитохромов представляет собой белковую молекулу, к которой присоединена химическая группировка, называемая гемом, в центре гема находится атом железа, который попеременно окисляется и восстанавливается, отдавая или принимая один электрон.

Все реакции биологического окисления происходят с участием ферментов, причем каждый фермент строго специфичен и катализирует либо окисление, либо восстановление вполне определенных химических соединений.

Еще один компонент системы переноса электронов - убихинон или кофермент Q, способен присоединять или отдавать электроны.

Митохондрии содержатся в цитоплазме клетки и представляют собой микроскопические палочковидные или иной формы образования, количество которых в одной клетке составляет сотни или тысячи.

Что же представляют собой митохондрии, каково их строение? Внутреннее пространство митохондрий окружено двумя непрерывными мембранами, причем наружная мембрана гладкая, а внутренняя образует многочисленные складки или кристы. Внутримитохондриальное пространство, ограниченное внутренней мембраной, заполнено так называемым матриксом, который примерно на 50% состоит из белка и имеет очень тонкую структуру. В митохондриях сосредоточено большое количество ферментов. Наружная мембрана митохондрий не содержит ни одного из компонентов цепи дыхательных катализаторов. Исходя из ферментного набора наружной мембраны, пока трудно ответить на вопрос, в чем состоит ее назначение. Возможно она играет роль перегородки, отделяющей внутреннюю, рабочую часть митохондрии от всего остального пространства клетки. С внутренней мембраной связаны ферменты дыхательной цепи. Матрикс содержит ряд ферментов цикла Кребса.

На первом этапе глюкоза расщепляется на 2 триозы:

Таким образом, на первом этапе гликолиза на активирование глюкозы затрачивается 2 молекулы АТФ и образуется 2 молекулы 3-фософоглицеринового альдегида.

На второй стадии окисляются 2 молекулы 3-фосфоглицеринового альдегида до двух молекул молочной кислоты.

Значение лактатдегидрогеназной реакции (ЛДГ) состоит в том, чтобы в безкислородных условиях окислить НАДН 2 в НАД и сделать возможным протекание глицеро-фосфатдегидрогеназной реакции.

Суммарное уравнение гликолиза: глюкоза + 2АДФ + 2Н 3 РО 4 → 2лактат + 2АТФ + 2Н 2 О

Гликолиз протекает в цитозоле. Его регуляцию осуществляют ключевые ферменты – гексокиназа, фософофруктокиназа и пируваткиназа . Эти ферменты активируются АДФ и НАД, угнетаются АТФ и НАДН 2 .

Энергетическая эффективность анаэробного гликолиза сводится к разнице между числом израсходованных и образовавшихся молекул АТФ. Расходуется 2 молекулы АТФ на молекулу глюкозы в гексокиназной реакции фосфофруктокиназной реакции. Образуется 2 молекулы АТФ на одну молекулу триозы (1/2 глюкозы) в глицерокиназной реакции и пируваткиназной реакции. На молекулу глюкозы (2 триозы) образуется соответственно 4 молекулы АТФ. Общий баланс: 4 АТФ – 2 АТФ = 2 АТФ. 2 молекулы АТФ аккумулируют в себе ≈ 20 ккал, что составляет около 3% от энергии полного окисления глюкозы (686 ккал).

Несмотря на сравнительно невысокую энергетическую эффективность анаэробного гликолиза, он имеет важное биологическое значение, состоящее в том, что это единственный способ образования энергии в безкислородных условиях. Он в условиях дефицита кислорода обеспечивает выполнение интенсивной мышечной работы и начало выполнения мышечной работы.

У детей анаэробный гликолиз очень активен в тканях плода в условиях дефицита кислорода. Он остаётся активным в период новорожденности, постепенно сменяясь на аэробное окисление.

Дальнейшее превращение молочной кислоты .

  • При интенсивном поступлении кислорода в аэробных условиях молочная кислота превращается в ПВК и через ацетил КоА включается в цикл Кребса, давая энергию.
  • Молочная кислота транспортируется из мышц в печень, где используется на синтез глюкозы – цикл Кори.

Цикл Кори

  • При больших концентрациях молочной кислоты в тканях для предотвращения закисления (ацидоза) она может выделяться через почки.

Стадии:

1. H 3 C – CO – COOH + ТДФ – Е 1 = H 3 C – CHOH - ТДФ – Е 1 + CO 2

2. H 3 C – CHOH - ТДФ – Е 1 + Липоевая кт.а – E2 = H 3 C – CO~ дигидролипоевая кт.а – E2 + ТДФ – Е 1

3. H 3 C – CO~ дигидролипоевая кт.а – E2 + HS-KoA = CH3 – CO ~ S – KoA+ дигидролипоевая кта – Е2

4. дигидролипоевая кта – Е2 + Е3 – ФАД = Липоевая кт.а – E2 + Е3-ФАДН2

5.Е3-ФАДН2+НАД+=Е3-ФАД + НАДН + Н+

Е 1 - пируватдегидрогеназа; Е 2 - ди-гидролипоилацетилтрансфсраза; Е 3 -дигидролипоилдегидрогеназа

Суммарная реакция:

H 3 C – CO – COOH+ HS-KoA+НАД+ = CH3 – CO ~ S – KoA+ CO 2 + НАДН + Н+

Описание:

Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».

На I стадии этого процесса пируват теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E 1). На II стадии оксиэтильная группа комплекса E 1 –ТПФ–СНОН–СН 3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидроли-поилацетилтрансферазой (Е 2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением.

На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид–Е 2 . При участии фермента дигидролипоилдегидрогеназы (Е 3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН 2 дигидро-липоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н + .

Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, ди-гидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 кофер-ментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E 1 , ли-поамид-Е 2 и ФАД-Е 3), а два – легко диссоциируют (HS-KoA и НАД).

Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путем самосборки.

Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом:

Пируват + НАД + + HS-KoA –> Ацетил-КоА + НАДН + Н + + СO 2 .

Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима .

Образовавшийся в процессе окислительного декарбоксилирования аце-тил-КоА подвергается дальнейшему окислению с образованием СО 2 и Н 2 О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбо-ксилирование пирувата, происходит в митохондриях клеток.

Картинка

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Дыхание у микробов рассматривается как энергетический процесс или как совокупность различных химических реакций, окисления и расщепления веществ органического и неорганического происхождения. В результате этих химических реакций освобождается энергия, которая используется микробами для усвоения питательных веществ, синтеза бел кон их тела, движения, роста, размножения и других отправлений живого организма.

Примером высвобождения энергии может служить окисление глюкозы, которое можно выразить следующим у соединением:

С6 Н2О + 6 О 2 6 Н2О+ 6СО2 + 674 ккал.

Как видно из уравнений, в результате полного окисления одной молекулы глюкозы до конечных продуктов (воды и углекислого газа) выделяются 674 большие калории тепла.

Энергетический процесс дыхания у микробов протекает значительно сложнее и зависит от характера используемого питательного материала.

По типу дыхания микробов делят на аэробов и анаэробов, имеются микробы и с переходным типом дыхания.

Аэробы могут жить и развиваться при свободном доступе кислорода воздуха. Необходимую энергию для жизненных процессов они получают путем, поглощения кислорода и окисления питательных материалов.

Анаэробы способны развиваться без доступа кислорода. Свободный кислород воздуха на этих микробов оказывает вредное, губительное влияние. Строгие (облигатные) анаэробы (столбнячная палочка, возбудитель маслянокислого брожения) совсем не переносят кислорода. Необходимую энергию они получают путем расщепления органических веществ углеводов, белков, жиров, органических кислот, спиртов.

Факультативные анаэробы используют те же вещества, но применительно к условиям своего существования могут изменять анаэробный тип своего дыхания на аэробный. Так, дрожжи верхового брожения "при ограниченном притоке воздуха разлагают сахар на спирт и углекислоту; при обильной аэрации у них возникает аэробное дыхание с полным окислением сахара до углекислоты и воды. Молочнокислые бактерии в анаэробных условиях превращают глюкозу в молочную кислоту, при этом энергии освобождается несколько меньше, чем у аэробов. При недостатке кислорода денитрифицирующие бактерии пользуются для окисления органических соединений кислородом нитратов.

Приведенные примеры показывают разнообразие источников энергии и способов ее получения разными видами микробов; в силу этих причин у бактерий нет и быть но может единого механизма дыхания.

Большинство аэробных микроорганизмов окисляет органические питательные вещества в процессе дыхания до С02 и воды. Поскольку в молекуле СО 2 достигается высшая степень окисления углерода, в этом случае говорят о полном окислении и отличают этот тип дыхания от не полных окислений, при которых в качестве продуктов обмена выделяются частично окисленные органические соединения.

Под «полным окислением» имеется в виду лишь то, что не происходит вы деления каких-либо органических веществ; но это вовсе не означает, что окисляется весь поглощенный субстрат. В каждом случае значительная часть субстрата (40-70%) ассимилируется, т.е. превращается в вещества клеток.

Конечными продуктами «неполных окислений» могут быть уксусная, глюконовая, фумаровая, лимонная, молочная кислоты и ряд других соединений. Поскольку эти продукты сходны с теми, которые образуются при брожениях (пропионовая, масляная, янтарная, молочная кислоты и др.), а также в связи с тем, что при промышленных процессах брожения необходимы специальные технические устройства (ферментеры), неполные окисления называют также «окислительным брожением» или «аэробной ферментацией». Слова «брожение» и «ферментация» в этом случае отражают скорее технологический аспект.

Мы будем причислять к «неполным окислениям» также простое отщепление водорода от субстрата и использование микроорганизмов для катализа некоторых реакций, не имеющих для них какого-либо значения в обычных условиях. Ниже будут рассмотрены некоторые примеры таких окислений.

Дыхание бактерий

Дыхание является самой совершенной формой окислительного процесса и наиболее эффективным способом получения энергии. Главное преимущество дыхания состоит в том, что энергия окисляемого вещества - субстрата, на котором микроорганизм растет, используется наиболее полно. Поэтому в процессе дыхания перерабатывается гораздо меньше субстрата для получения определенного количества энергии, чем, например, при брожениях.

Рис.10. Роль пировнноградной кислоты в процессах дыхания и брожения.

Процесс дыхания заключается в том, что углеводы (или белки, жиры и другие запасные вещества клетки) разлагаются, окисляясь кислородом воздуха, до углекислого газа и воды. Выделяющаяся при этом энергия расходуется на поддержание жизнедеятельности организмов, рост и размножение. Бактерии вследствие ничтожно малых размеров своего тела не могут накапливать значительного количества запасных веществ. Поэтому они используют в основном питательные соединения среды.

В общем виде дыхание можно представить следующим уравнением:

С6Н12О6 + 602 = 6С02 + 6Н20 + 2,87-106 дж.

глюкоза кислород углекислый газ вода энергия

За этой простой формулой скрывается сложная цепь химических реакций, каждая из которых катализируется специфическим ферментом.

Рис. 11. Схема гликолитического пути расщепления углеводов.

Ферментативные реакции, происходящие в процессе дыхания, в настоящее время хорошо изучены. Схема реакций оказалась универсальной, т. е. в принципе одинаковой у животных, растений и многих микроорганизмов, в том числе бактерий. Процесс дыхания при окислении глюкозы складывается из следующих основных этапов (рис. 10).

Сначала происходит образование фосфорных эфиров глюкозы - моноaктивированная глюкоза в форме дифосфата далее расщепляется на два триозофосфата (трехуглеродные соединения): фосфоглицериновый альдегид и диоксиацетон-фосфат, которые могут обратимо превращаться друг в друга.

Рис. 12. Цикл трикарбоновых кислот. Стрелками показано направление, а номерами - порядок реакций.

Далее в обмен вступает фосфоглицериновый альдегид, он окисляется в дифосфо-глицериновую кислоту. Назначение этого процесса заключается в отщеплении атомов водорода от окисляемого субстрата и переносе водорода с помощью специфических окислительных ферментов к кислороду воздуха (см. рис. 10, 11).

Водород от фосфоглицеринового альдегида присоединяется к ферменту - никотин-амиддинуклеотиду (НАД); при этом альдегид окисляется до кислоты и выделяется энергия. Часть этой энергии тратится на образование АТФ; при этом присоединяется фосфорная кислота к аденозиндифосфат у- АДФ. При гидролизе АТФ энергия освобождается и может быть затрачена на различные процессы синтеза белка и другие нужды клетки.

Фосфоглицериыовая кислота окисляется до пировиноградной кислоты. При этом также образуется АТФ, т. е. запасается энергия.

На этом завершается первая - анаэробная - стадия процесса дыхания, которая носит название гликолитического пути или пути Эмбдена - Мейергофа - Парнаса. Для осуществления этих реакций кислород не требуется. Образовавшаяся пировиноградная кислота (СН3СОСООН) является интереснейшим и очень важным соединением. Пути расщепления глюкозы в процессе дыхания и многих брожений, вплоть до образования пировиноградной кислоты, идут совершенно одинаково, что впервые было установлено русским биохимиком С. П. Костычевым. Пировиноградная кислота является тем центральным пунктом, от которого расходятся пути дыхания и брожений, откуда начинается специфическая для данного процесса цепь ферментативных превращений -специфическая цепь химических реакций (рис. 11).

В процессе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот (рис. 12). Это сложный замкнутый круг превращений, в результате которых образуются органические кислоты с 4, 5 и 6 атомами углерода (яблочная, молочная, фумаро-вая, а-кетоглутаровая и лимонная) и отщепля-«тся углекислота.

Прежде всего от пировиноградной кислоты, содержащей три атома углерода, отщепляется СО2 - образуется уксусная кислота, которая с коферментом А образует активное соединение - ацетилкоэнзим А. Он передает остаток уксусной кислоты (ацетил) на щавелевоуксусную кислоту {4 атома углерода), и образуется лимонная кислота (6 атомов углерода). Лимонная кислота претерпевает несколько превращений, в результате выделяется С02 и образуется пяти-углеродное соединение - а-кетоглутаровая кислота. От нее тоже отщепляется С02 (третья молекула углекислого газа), и образуется янтарная кислота (4 атома углерода), которая затем превращается в фумаровую, яблочную и, наконец, щавелевоуксусную кислоту.

На этом цикл замыкается. Щавелевоуксусная кислота снова может вступить в цикл.

Таким образом, в цикл вступает трехуглерод-ная пировиноградная кислота, и по ходу превращений выделяются 3 молекулы С02.

Водород пировиноградной кислоты, освобождающийся при дегидрировании в аэробных условиях, не остается свободным - он поступает в дыхательную цепь (так же, как водород глицеринового альдегида, отнятый при превращении его в глицериновую кислоту). Это - цепь окислительных ферментов.

Ферменты, которые первыми берут на себя водород от окисляемого субстрата, называются первичными дегидрогеназами.

В их состав входят ди- или трипиридин-нуклео-тиды: НАД или НАДФ и специфический белок. Механизм присоединения водорода - один и тот же:

Окисляемое вещество - Н2 + НАД -> окисленное вещество + НАД*Н2

Водород, полученный дегидрогеназой, затем присоединяется к следующей ферментной системе - флавиновым ферментам (ФМН или ФАД).

От флавиновых ферментов электроны попадают на цитохромы - железосодержащие протеиды (сложные белки). По цепи цитохро-мов передается не атом водорода, а только электроны. При этом происходит изменение валентности железа: Fe++ - e->Fe++

Заключительная реакция дыхания - это присоединение протона и электрона к кислороду воздуха и образование воды. Но прежде происходит активирование молекулы кислорода под действием фермента цитохромоксидазы. Активирование сводится к тому, что кислород приобретает отрицательный заряд за счет присоединения электрона окисляемого вещества. К активированному кислороду присоединяется водород (протон), образуя воду.

Кроме упомянутой цепи переносчиков электронов и водорода, известны и другие. Процесс этот гораздо более сложен, чем изложенная схема.

Биологический смысл этих превращений заключается в окислении веществ и образовании энергии, В результате окисления молекулы сахара (глюкозы) в АТФ запасается 12,6-1053ж энергии, в самой молекуле сахара содержится 28,6-106 дж, следовательно, полезно используется 44% энергии. Это очень высокий коэффициент полезного действия, если сравнить его с к. п. д. современных машин.

В процессе дыхания образуется огромное количество энергии. Если вся она выделилась бы сразу, то клетка перестала бы существовать. Но этого не происходит, потому что энергия выделяется не вся сразу, а ступенчато, небольшими порциями. Выделение энергии небольшими дозами обусловлено тем, что дыхание представляет собой многоступенчатый процесс, на отдельных этапах которого образуются различные промежуточные продукты (с разной длиной углеродной цепочки) и выделяется энергия. Выделяющаяся энергия не расходуется в виде тепла, а запасается в универсальном макроэр-гическом соединении - АТФ. При расщеплении АТФ энергия может использоваться в любых процессах, необходимых для поддержания жизнедеятельности организма: на синтез различных органических веществ, механическую работу, поддержание осмотического давления протоплазмы и т. д.

Дыхание является процессом, дающим энергию, однако его биологическое значение этим не ограничивается. В результате химических реакций, сопровождающих дыхание, образуется большое количество промежуточных соединений. Из этих соединений, имеющих различное количество углеродных атомов, могут синтезироваться самые разнообразные вещества клетки: аминокислоты, жирные кислоты, жиры, белки, витамины.

Поэтому обмен углеводов определяет остальные обмены веществ (белков, жиров). В этом его огромное значение.

С процессом дыхания, его химическими реакциями связано одно из удивительных свойств микробов - способность испускать видимый свет - люминесцировать.

Известно, что ряд живых организмов, в том числе бактерии, могут испускать видимый свет. Люминесценция, вызываемая микроорганизмами, известна уже в течение столетий. Скопление люминесцирующих бактерий, находящихся в симбиозе с мелкими морскими животными, иногда приводит к свечению моря; с люминесценцией встречались также при росте некоторых бактерий на мясе и т. д.

К основным компонентам, взаимодействие между которыми приводит к испусканию света, относятся восстановленные формы ФМН или НАД, молекулярный кислород, фермент люцифераза и окисляемое соединение - люциферин. Предполагается, что восстановленные НАД или ФМН реагируют с люциферазой, кислородом и люциферином, в результате чего электроны в некоторых молекулах переходят в возбужденное состояние и возвращение этих электронов на основной уровень сопровождается испусканием света. Люминесценцию у микробов рассматривают как «расточительный процесс», так как при этом энергетическая эффективность дыхания снижается.

Аэробное окисление глюкозы включает 3 стадии:

1 стадия протекает в цитозоле, заключается в образовании пировиноградной кислоты:

Глюкоза → 2 ПВК + 2 АТФ + 2 НАДН 2 ;

2 cтадия протекает в митохондриях:

2 ПВК → 2 ацетил - КоА + 2 НАДН 2 ;

3 стадия протекает внутри митохондрий:

2 ацетил - КоА → 2 ЦТК.

В силу того, что 2 молекулы НАДН 2 на первом этапе образуются в цитозоле, а окисляться они могут только в митохондриальной дыхательной цепи, необходим перенос водорода от НАДН 2 цитозоля во внутримитохондриальные цепи переноса электронов. Митохондрии непроницаемы для НАДН 2 , поэтому для переноса водорода из цитозоля в митохондрии существуют специальные челночные механизмы. Их суть отражена на схеме, где Х окисленная форма переносчика водорода, а ХН 2 – его восстановленная форма:

В зависимости от того, какие вещества участвуют в переносе водорода через митохондриальную мембрану, различают несколько челночных механизмов.

Глицерофосфатный челночный механизм, в котором происходит потеря двух молекул АТФ, т.к. вместо двух молекул НАДН 2 (потенциально 6 молекул АТФ) образуется 2 молекулы ФАДН 2 (реально 4 молекулы АТФ).

Малатный челночный механизм работает на вынос водорода из митохондриального матрикса:

Энергетическая эффективность аэробного окисления.

  1. глюкоза → 2 ПВК + 2 АТФ + 2 НАДН 2 (→8 АТФ).
  2. 2 ПВК→ 2 ацетил КоА + 2 НАДН 2 (→6 АТФ).
  3. 2 ацетил КоА → 2 ЦТК (12*2 = 24 АТФ).

Итого возможно образование 38 молекул АТФ, из которых необходимо вычесть 2 молекулы АТФ, теряемые в глицерофосфатном челночном механизме. Таким образом, образуется 36 АТФ .

36 АТФ (около 360 ккал) составляют от 686 ккал. 50-60% - это энергетическая эффективность аэробного окисления глюкозы, что в двадцать раз выше, чем эффективность анаэробного окисления глюкозы. Поэтому в тканях при поступлении кислорода анаэробный путь блокируется, и это явление называется эффектом Пастера . У новорожденных аэробный путь начинает активироваться в первые 2-3 месяца жизни.

6.5. 2. Биосинтез глюкозы (глюконеогенез)

Глюконеогенез - это путь синтеза глюкозы в организме из неуглеводных веществ, который способен длительно поддерживать уровень глюкозы при отсутствии углеводов в пищевом рационе. Исходными веществами для него являются молочная кислота, ПВК, аминокислоты, глицерин. Наиболее активно глюконеогенез протекает в печени и почках. Этот процесс внутриклеточно локализован частично в цитозоле, частично в митохондриях. В целом глюконеогенез является процессом обратным гликолизу.

В гликолизе имеются три необратимых стадии, катализируемых ферментами:

· пируваткиназа;

· фосфофруктокиназа;

· гексокиназа.

Поэтому в глюконеогенезе вместо этих ферментов имеются специфические ферменты, которые осуществляют «обход» этих необратимых стадий:

  • пируваткарбоксилаза и карбоксикиназа («обходят» пируваткиназу);
  • фруктозо-6-фосфатаза («обходит» фосфофруктокиназу);
  • глюкозо-6-фосфатаза («обходит» гексокиназу).

Ключевыми ферментами для глюконеогенеза являются пируваткарбоксилаза и фруктозо-1,6-дифосфатаза . Активатором для них являются АТФ (на синтез одной молекулы глюкозы необходимо 6 молекул АТФ).

Таким образом, высокая концентрация АТФ в клетках активирует глюконеогенез, требующий затраты энергии и в то же время ингибирует гликолиз (на стадии фосфофруктокиназы), ведущий к образованию АТФ. Данное положение иллюстрирует приведенный ниже график.

Витамин Н

В глюконеогенезе участвует витамин Н (биотин, антисеборейный витамин), который по химической природе представляет собой серосодержащий гетероцикл с остатками валериановой кислоты. Он широко распространён в животных и растительных продуктах (печень, желток). Суточная потребность в нём составляет 0,2 мг. Авитаминоз проявляется дерматитом, поражением ногтей, увеличением или уменьшением образования кожного жира (себорея). Биологическая роль витамин Н:

  • участвует в реакциях карбоксилирования;
  • участвует в реакциях транскарбоксилирования;
  • участвует в обмене пуриновых оснований, некоторых аминокислот.

Глюконеогенез активен в последние месяцы внутриутробного развития. После рождения ребёнка активность процесса возрастает, начиная с третьего месяца жизни.