Строение простых веществ – неметаллов. Химические, физические свойства веществ Что химические свойства

Бог дал человеку железо, а черт подсунул ржавчину.

Поговорка

Изменение свойств в декадах. Поскольку для d-элементов характерныположительные ст.ок., то в виде простых веществ они проявляют восстановительные свойства, которые в водных растворах характеризуются значением редокс-потенциалом E . 0 В декадах слева направо его значение, коррелируя с величиной I 1 ,растет , но при переходе к марганцу и к подгруппе цинка, несмотря на резкое увеличение I 1 , снижается из-за уменьшения значения I 2 и понижения энергии кристаллической решетки при переходе к данным металлам (от расположенных левее их в периодической таблице).

В компактном состоянии при об.у. даже М первой декады, имеющие отрицательные значения E (0 от Sc до Mn E 0 < −0,90 B), с водой не реагируют вследствие образованияпассивирующих оксидных пленок на их поверхности. Однако при температуре красного каления и менее активные металлы (железо, никель, аналоги ванадия и титана) вытесняют водород из воды. Реакционная способность М также резко возрастает при переведении их вмелкодисперсное состояние, например, порошки марганца и хрома взаимодействуют с водой при об.у. (с образованием MnO 2 и Cr 2 O 3).

Из разбавленных растворов кислот вытесняют водород все металлы первой декады, для которых E 0 < 0, кроме ванадия. Наиболее активные М: цинк и марганец – растворяются даже в уксусной кислоте, а медь (в ряду напряжений стоит правее водорода) лишь в т.н. кислотах-окислителях. При указанных взаимодействиях только Sc и Тi образуют соединения в ст.ок. (+3), остальные – в (+2), хотя хром(II) и (гораздо медленнее) железо(II) на воздухе затем окисляются до (+3).

Аномальная пассивность ванадия (E 0 = −1,20 В) в разбавленных кислотах объясняетсяособой плотностью его оксидной пленки. Она растворяется лишь в HF или концентрированной HNO , 3 с которыми и реагирует данный металл:

V + HNO 3 = HVO 3 + NO.

Другие активные М в зависимости отрастворимости их оксидной пленки в концентрированной азотной кислоте или реагируют с ней, восстанавливая азот до (-3) (это цинк, марганец и подгруппа скандия), или пассивируются ею за счет утолщения оксидной пленки, как, например, Cr 124 .

Пассивацию можно провести и искусственно. Так, обработка хрома (находящегося в ряду напряжений между цинком и железом) концентрированной азотной кислотой повышает его потенциал с –0,56 В до +1,2 В, т.е. делает Cr почти таким же благородным, как Pt. (Особенно легко дезактивируется хром в составе нержавеющей стали и других сплавов 125 .) Концентрированные H 2 SO 4 и HNO 3 пассивируют и железо.

Кобальт и никель сходны с Fe по химической активности из-за близости радиусов атомов (поэтому объединяются в семейство железа ). Однако, если с разбавленными HCl и H 2 SO 4 железо реагирует при об.у., то Co и Ni при нагревании. Кроме того, они дезактивируются азотной кислотой в меньшей степени, чем железо, вследствие большей растворимости их оксидов в данной кислоте.

Отметим, что для элементов второй и третьей декад характер изменения величины E 0 сохраняется примерно таким же, как в первой.

Изменения свойств в подгруппах. Значение I 1 в d-подгруппах, в основном,растет и повышается прочность связей в решетке М (сравните т.пл.). Как следствие (в отличие от главных подгрупп и подгруппы Sc) величина E 0 становится более положительной, и реакционная способность металловуменьшается .

Так, в IБ подгруппе, если медь растворяется в концентрированной серной кислоте при об.у., то серебро лишь при t > 160 0 C. Однако серебро, как и медь, прикомнатной температуре взаимодействует с азотной кислотой, а золото –только с «царской водкой» (а также с селеновой кислотой (см. выше) и с хлорной водой в присутствии HCl).

Во IIБ подгруппе Zn растворим даже в уксусной кислоте, Cd – в HCl, a Hg (E 0 > 0) лишь в HNO (3 при недостатке кислоты окисление идет до Hg , 2 2 + а при избытке – до Hg). 2 +

Аналогично в VIIБ подгруппе – Mn реагирует и с CH COOH 3 , а Tc и Rе (значения их

Е 0: 0,47 В и 0,37 В соответственно), при об.у. растворяются лишь в кислотах-окислителях, например, в азотной (продукты NO и HЭO 4).

В VIIIБ подгруппе металлы семейства железа все взаимодействуют с разбавленными кислотами. А их аналоги, т.е. платиновые металлы (E 0 > 0) окисляются лишь вжестких условиях, причем, близость их радиусов обусловливает большоесходство в химическом поведении, но есть иразличия .

Так, наиболее активный из них – палладий – относится к кислотам, как и серебро; а родий и иридий, в отличие от остальных, не растворяются даже в «царской водке» 126 . Они реагируют с раствором хлорида натрия, насыщенным хлором, при температуре красного каления за счет образованияустойчивых комплексов Na 3 [ЭCl 6 ]. Однако в виде черни эти металлы легко взаимодействуют с горячей серной кислотой и даже с хлороводородной в присутствии кислорода. Отметим, что в этих условиях осмий за счет большого сродства к кислороду (?) растворяется и в компактном виде.

В IV, V и VI побочных подгруппах у М второй и третьей декад E 0 < 0 , но за счет влиянияплотной оксидной пленки на их поверхности они реагируют с кислотами только в жестких условиях. Так, Zr и Hf растворимы лишь в кислотах-комплексантах: в горячей серной кислоте (продукт – H 2 [Э(SO 4) ] 3) и во фтороводородной (H 4 [ЭF 8 ]); молибден взаимодействует только с кислотами-окислителями при нагревании, а вольфрам, ниобий и тантал – лишь со смесью HF и HNO (3 продукты NO и H 2 WF 8 или H 2 ЭF 7 соответственно).

Итак, независимо от того, есть наложение кинетического фактора (пассивирующей пленки) или нет, активность d-металлов по отношению к кислотам в подгруппах снижается. Исключение , как уже отмечалось, составляетподгруппа скандия , в которой нет влияния f-сжатия и характер изменения значений радиуса атома, I 1 и E 0 тот же, что и в главных подгруппах. Как следствие, лантан (в отличие от скандия и иттрия, растворимых при об.у. лишь в кислотах) взаимодействует даже с водой:

La + H 2 O→ La(OH) 3 + H 2 .

Отношение d-металлов к щелочам. Наиболее устойчиво к щелочи серебро 127 , а наименее – цинк: окисляется дажераствором щелочи, восстанавливая водород воды и образуя комплекс 128 − . Остальные d-металлы, если склонны к существованию в анионной форме, реагируют со щелочами (или содой)при сплавлении , например:

Ti⎫ ⎧Na 2 TiO 3 ⎬ + NaOH→ H 2 + ⎨ .

    ⎭ ⎩Na 3 VO 4

В случае других необходимо наличие окислителя :

Cr + NaNO 3 + NaOH→ Na 2 CrO 4 + NaNO 2 ,

    O 2 + Na 2 CO 3 → Na 2 WO 4 + CO 2 .

Причем W и Мо взаимодействуют со щелочью активнее, чем Cr, т.к. их поверхность в ходе реакции покрывается более кислотным оксидом (ЭO), 3 чем в случае хрома (Cr 2 O 3).

Взаимодействие d-металлов с простыми веществами. Коррозия. При комнатных условиях лишь фтор окисляет большинство d-металлов, кроме благородных (но реакции с Cu, Ni, Fe (как и с Pb, Al) ограничиваются образованием защитных пленок фторидов). Кроме того, при об.у. золото взаимодействует с бромом, а ртуть – с иодом и серой за счет образования термодинамически оченьустойчивых продуктов: AuBr , 3 HgI 2 и HgS (см. раздел «Галогены»).

На воздухе в мелкодисперсном состоянии достаточно активные металлы (Ti, Cr, Mn, Fe, Co, Ni) пирофорны 2 (т.е. загораются при пересыпании на воздухе), но в компактном виде большинство М устойчиво за счет пассивации. Особенноплотные поверхностные пленки образуют металлы подгруппы ванадия и титана, поэтому они обладают высокой коррозионной стойкостью (даже в морской воде).

Другие металлы не так устойчивы. Под действием компонентов воздуха (каких?) медленно идет коррозия цинка и меди (с образованием Э 2 (OH) 2 CO 3); темнеет даже серебро, покрываясь сульфидом (под совокупным воздействием O 2 , H 2 O и H 2 S ; какова роль каждого из них?).

Особенно быстро корродирует железо. Правда, в сухой атмосфере его окисление протекает лишь до формирования плотной пассивирующей пленки FeO. Зато в присутствии влаги продукт, полученный по реакции:

Fe + H 2 O→ FeO+ H 2 ,

окисляется кислородом, активированным молекулами H 2 O , до Fe 2 O 3 . При этом вода, сорбированная поверхностью металла, частично растворяя в себе продукты окисления,препятствует формированиюплотной структуры оксида, вследствие чего коррозия железа идетвглубь .

Добавление щелочи снижает окислительный потенциал кислорода, и поэтому процесс идет в меньшей степени. Отметим, что очень чистое железо, хорошо адсорбирующее водород и таким образом пассивирующее свою поверхность, не окисляется.

Техническое железо для защиты от коррозии окрашивают или подвергают лужению, цинкованию, хромированию, никелированию, азотированию (покрытие из Fe 4 N), цементированию (Fe C 3) и другим методам обработки. В частности,остекловывание поверхности металла с помощью лазера в 12 раз повышает коррозионную устойчивость, но при нагревании М выше 200 0 С этот эффект теряется. Более надежный, но дорогой способ борьбы с окислением железа на воздухе – получение нержавеющей стали (18% Cr и 9% Ni).

Однако коррозия – это медленный процесс, а достаточно быстро d-металлы реагируют с неметаллами лишьпри нагревании , даже наиболее активные М подгруппы скандия (окисляясь до (+3)). (Онако от Sc к La активность взаимодействия увеличивается (?), и лантан, например, в хлоре загораетсяпри об.у. )

В случае менее реакционноспособных (?) металлов подгруппы титана требуется большее нагревание (выше 150 0 С). При этом Hf переходит в Hf + 4 , а Ti и Zr могут образовывать продукты внизшей ст.ок.: Ti 2 O 3 , ZrCl 2 и др. Однако они - сильные восстановители, особенно в случае Zr (?) – окисляются на воздухе или дисмутируют:

ZrCl 2 → Zr+ ZrCl 4 .

С еще менее активными металлами подгруппы ванадия реакции идут при t > 400 0 C, причем с образованием продуктов только в высшей ст.ок. (+5).

При переходе к подгруппе хрома реакционная способность М растет (за счет большей летучести оксидов), но от Cr к W снижается (?). Так, хром взаимодействует со всеми Г 2 , молибден не реагирует с I 2 , а вольфрам – и с Br 2 . Причем окисление хрома идет до (+3), а его аналогов - до (+6). (Отметим, что WF – 6 самый тяжелый газ при н.у.)

Аналогичные закономерности наблюдаются и в других подгруппах d-металлов. Так, технеций и рений с иодом не взаимодействуют, а с остальными галогенами - лишь при t > 400 0 C , образуя ЭГ 7 . В то же время марганец окисляется при небольшом нагревании

даже серой и до ст.ок. (+2).

Медь реагирует с влажным хлором при об.у., серебро - при небольшом нагревании, а золото – лишь при t> 200 0 C. Кислород при нагревании действует только на медь (продукт CuO, при более высоких температурах – Cu 2 O (?)), а серебро окисляется (в отличие от золота) озоном (до AgO).

Цинк горит и в CO 2 , а ртуть при об.у. даже оксидной пленкой не покрывается. При нагревании до 300 0 C она образует смесь оксидов HgO и Hg 2 O, которые при t> 400 0 C отщепляют O, переходя в Hg, в то время как температура разложения оксида кадмия равна 1813 0 С, а ZnO – 1950 0 C.

Наиболее химически устойчивы платиновые металлы и золото, но при достаточном нагревании они реагируют почти со всеми неметаллами (Г 2 , O 2 , S, P, As), хотя и с разной активностью иселективностью ; а именно: в периодах слева направо устойчивость к O 2 и F 2 растет, а к Cl 2 и S снижается (в соответствии с электронным строением атомов элементов (?)).

Так, если фтор реагирует с платиной лишь при t > 400 0 C, то хлор – при 250 0 C (продукт PtCl 2). Или если рассматривать взаимодействие с кислородом: осмий в виде черни окисляется на воздухе при об.у. (до OsO 4), рутений – при небольшом нагревании, а остальные – при температуре красного каления. Продукты: IrO 2 , PdO, PtO 2 , Rh 2 O 3 .

(При более сильном нагревании эти оксиды разлагаются, причем, если реакция:

PtO 2 → Pt+ O 2

идет при 500 0 С, то разложение:

RuO 2 → Ru+ O 2

происходит лишь, когда t > 1300 0 C).

Аналогичное увеличение устойчивости металла к кислороду наблюдается и при переходе от железа к никелю (см. табл. 14).

Таблица 14. Характеристика взаимодействия металлов семейства железа с кислородом

Образование твердых растворов. Особенность d-металлов - склонность их за счет большого разнообразия ст.ок. и валентных состояний к формированию соединенийнестехиометрического состава: интерметаллидов (AlNi и др.) или металлидов (Fe S 3 , VN, LaB , ZrC 6 и др.). А такжетвердых растворов , в частности, раствороввнедрения газов. Так, металлы подгруппы скандия и титана поглощают водород при об.у. до состава: ЭH 2 и ЭH (3 при нагревании растворимость Н 2 снижается).

Особым сродством к водороду обладают никель и палладий (1 V Pd растворяет 1000 V H 2), являющиеся поэтому катализаторами реакцийгидрирования . А, например, платина преимущественно сорбирует O 2 (до 700 V) и поэтому используется как катализатор процессов, протекающих с участием кислорода:окисления NH 3 до NO , SO 2 до SO , 3 для дожигания выхлопных газов автомобилей (при этом, в часности, NO превращается в N 2 , а CO – в CO 2) и др.

Механизм каталитического действия указанных металлов в том, что, как предполагают, растворяющиеся в М газы атомизируются . Так, водород, выделяющийся при нагревании его раствора в металле, является более сильным восстановителем, чем молекулярный.

Кроме того, например, палладий при поглощении H 2 до определенного предела сохраняет металлические свойства, но теряет парамагнетизм. Значит, хотя бы часть атомов водорода отдает свои валентные электроны в зону проводимости металла.

Есть также данные о частичном образовании гидрид-ионов, например, при растворении водорода в железе. Получены и т.н. нетрадиционные гидриды, в которых молекулы H 2 координированы как целое на атоме d-металла. (Они служат моделями при изучении интермедиатов, возникающих в ходе катализа.)

На сегодняшний день существует около 2,5 миллионов разнообразных соединений как природного происхождения, так и синтезированных искусственно человеком. Все они очень разные, часть из них - незаменимые участники биологических процессов, происходящих в живых организмах. Отличают соединения друг от друга свойства веществ. Характеристики и то, что еще позволяет идентифицировать ту или иную химическую молекулу, рассмотрим далее.

Что такое вещество?

Если давать определение этому понятию, то нужно указать на его связь с физическими телами. Ведь веществом принято считать именно то, из чего состоят эти тела. Так, стекло, железо, сера, дерево - это вещества. Примеры можно приводить бесконечно. Проще понять следующее: рассматриваемым термином обозначают все существующее в мире многообразие различных сочетаний молекул, а также простых одноатомных частиц.

Таким образом, вода, спирт, кислоты, щелочи, белки, углеводы, соль, сахар, песок, глина, алмаз, газы и прочее - это все и есть вещества. Примеры позволяют более четко уловить суть этого понятия.

Физическое тело - это продукт, который создается природой или человеком на основе различных соединений. Например, стакан - это тело, которое состоит из стекла, а лист бумаги - это тело, которое представляет собой обработанную целлюлозу или древесину.

Конечно, все молекулы разные. То, что лежит в основе их отличия, называется их свойствами - физическими, органолептическими и химическими. Определяются они при помощи специальных методов, которые у каждой науки свои. Это могут быть и математические, аналитические, экспериментальные, инструментальные способы, и еще множество самых разнообразных. Например, наука химия использует для каждого вещества, вернее, для его идентификации, свой реагент. Он подбирается на основании особенностей строения молекулы и прогнозирования химических свойств. Затем проверяется экспериментально, утверждается и закрепляется в теоретической базе.

Классификация веществ

В основу деления соединений на группы может быть положено множество разных признаков. Например, агрегатное состояние. Все они могут быть по этому фактору четырех видов:

  • плазма;
  • жидкость;
  • кристаллическое вещество (твердое).

Если брать за основу более "глубокий" признак, то все вещества можно разделить на:

  • органические - в основе цепочки и циклы из атомов углерода и водорода;
  • неорганические - все остальные.

По элементному составу, который отражают формулы веществ, все они бывают:

  • простые - из одного вида химического атома;
  • сложные - два и больше разных типов элементов.

В свою очередь, простые делятся на металлы и неметаллы. Сложные имеют множество классов: соли, основания, кислоты, оксиды, сложные эфиры, углеводороды, спирты, нуклеиновые кислоты и так далее.

Разные виды формул соединений

Что является наглядным, то есть графическим, отображением соединений? Конечно, это формулы веществ. Они бывают разными. В зависимости от вида заключенная в них информация о молекуле тоже отличается. Так, существуют такие варианты:

  1. Эмпирическая, или молекулярная. Отражает количественный и качественный состав вещества. Она включает в себя символы входящих в состав элементов и индекс в нижнем левом углу у него, показывающий количество данного атома в составе молекулы. Например, Н 2 О, Na 2 SO 4 , AL 2 (SO 4) 3 .
  2. Электронно-графическая. Такая формула показывает количество валентных электронов у каждого элемента, входящего в состав соединения. Поэтому по такому варианту уже можно предсказать некоторые химические и веществ.
  3. В органической химии принято использовать полные и сокращенные Они отражают порядок связи атомов в молекулах, кроме того, четко указывают на принадлежность вещества к тому или иному классу соединений. А это позволяет с точностью определить конкретный тип молекулы и спрогнозировать все характерные для нее взаимодействия.

Поэтому химическая символика и правильно составленные формулы соединений - важнейшая часть работы со всеми известными веществами. Это которые должен знать каждый школьник, изучающий химию.

Физические свойства

Очень важной характеристикой являются проявляемые физические свойства веществ. Что относится именно к этой группе?

  1. Агрегатное состояние при различных условиях, в том числе при стандартных.
  2. Температуры кипения, плавления, замерзания, испарения.
  3. Органолептические характеристики: цвет, запах, вкус.
  4. Растворимость в воде и других растворителях (органических, например).
  5. Плотность и текучесть, вязкость.
  6. Электро- и теплопроводность, теплоемкость.
  7. Электрическая проницаемость.
  8. Радиоактивность.
  9. Абсорбция и эмиссия.
  10. Индуктивность.

Также есть ряд показателей, которые очень важны для полного списка, отражающего свойства веществ. Однако они находятся между физическими и химическими. Это:

  • тип кристаллической решетки;
  • электроотрицательность;
  • твердость и хрупкость;
  • ковкость и пластичность;
  • испаряемость или летучесть;
  • биологическое воздействие на живые организмы (отравляющее, удушающее, нервнопаралитическое, нейтральное, благоприятное и прочее).

Часто эти показатели упоминаются именно тогда, когда рассматриваются уже непосредственно химические свойства веществ. Однако можно указать их и в разделе физических, что ошибкой не будет.

Химические свойства веществ

К данной группе относятся все возможные виды взаимодействий рассматриваемой молекулы с другими простыми и сложными веществами. То есть это непосредственно химические реакции. Для каждого вида соединения они строго специфичны. Однако выделяют общие групповые свойства для целого класса веществ.

Например, все кислоты способны реагировать с металлами согласно их положению в электрохимическом ряду напряжений металлов. Также для всех характерны реакции нейтрализации с щелочами, взаимодействие с нерастворимыми основаниями. Однако концентрированная серная и азотная кислоты особые, так как продукты их взаимодействия с металлами отличаются от полученных в результате реакций с другими представителями класса.

Химических свойств очень много у каждого вещества. Их количество определяется активностью соединения, то есть способностью реагировать с другими компонентами. Есть высокореакционноспособные, есть практически инертные. Это строго индивидуальный показатель.

Простые вещества

К таковым относятся те, что состоят из одного вида атомов, но разного их количества. Например, S 8, O 2, O 3, Au, N 2, P 4, CL 2, Ar и прочие.

Химические свойства простых веществ сводятся к взаимодействию с:

  • металлами;
  • неметаллами;
  • водой;
  • кислотами;
  • щелочами и амфотерными гидроксидами;
  • органическими соединениями;
  • солями;
  • оксидами;
  • пероксидами и ангидридами и прочими молекулами.

Опять же следует указать, что это узко специфичная характеристика для каждого конкретного случая. Поэтому физические и химические свойства простых веществ рассматриваются индивидуально.

Сложные вещества

К данной группе относятся такие соединения, молекулы которых образованы двумя и более разными химическими элементами. Количество каждого из них может быть разным. Для понимания приведем несколько простых примеров:

  • H 3 PO 4 ;
  • K 3 ;
  • Cu(OH) 2 ;
  • AL 2 O 3 и прочие.

Так как все они относятся к разным классам веществ, выделить общие физические и химические характеристики для всех невозможно. Это специфичные свойства, своеобразные и индивидуальные в каждом конкретном случае.

Неорганические вещества

Их на сегодняшний день насчитывается свыше 500 тысяч. Встречаются как простые, так и сложные. Всего можно выделить несколько основных которые представляют все их многообразие.

  1. Простые вещества металлы.
  2. Оксиды.
  3. Простые вещества неметаллы.
  4. Благородные или инертные газы.
  5. Пероксиды.
  6. Ангидриды.
  7. Летучие водородные соединения.
  8. Гидриды.
  9. Соли.
  10. Кислоты.
  11. Основания.
  12. Амфотерные соединения.

Любой представитель каждого из классов имеет свой набор физико-химических свойств, позволяющих отличить его среди других соединений и идентифицировать.

Свойства органических веществ

Органика - это такой раздел химии, который занимается изучением соединений, отличных от неорганических, и их свойств. В основе их строения лежат атомы углерода, способные соединяться друг с другом в различные структуры:

  • линейные и разветвленные цепи;
  • циклы;
  • ароматические кольца;
  • гетероциклы.

Живые организмы состоят как раз из таких соединений, ведь основа жизни - это белки, жиры и углеводы. Все они - представители Поэтому и свойства их особенные. Однако в любом случае, независимо от того, о какой молекуле идет речь, все равно для нее будет характерен определенный набор физико-химических свойств, которые мы уже упоминали раньше.

Что такое живое вещество?

Живым называется вещество, из которого сложена вся биомасса нашей планеты. То есть те организмы, которые составляют жизнь на ней:

  • бактерии и вирусы;
  • простейшие;
  • растения;
  • животные;
  • грибы;
  • люди.

Так как основная часть соединений в составе живого существа - органические, то именно их и можно отнести к группе живого вещества. Однако не все. Только те, без которых невозможно существование представителей живой биосферы. Это белки, нуклеиновые кислоты, гормоны, витамины, жиры, углеводы, аминокислоты и прочие. Термин "живое вещество" был введен Вернадским, основателем учения о биосфере планеты.

Свойства живого вещества:

  • обладание энергией с возможностью ее преобразования;
  • саморегуляция;
  • произвольное движение;
  • чередование поколений;
  • чрезвычайное разнообразие.

Кристаллы и металлические вещества

Кристаллическими называют все соединения, имеющие определенный тип строения пространственной решетки. Существуют соединения с атомной, молекулярной или металлической кристаллической решеткой. В зависимости от типа отличаются и свойства Типичными твердыми соединениями, имеющими вид мелко- или крупнодисперсных кристалликов, являются различные соли.

Также существуют и простые вещества с подобной структурой, например, алмаз или графит, драгоценные и полудрагоценные камни, минералы, горные породы. Основные свойства их:

  • твердость;
  • хрупкость;
  • средние температуры плавления и кипения.

Однако, как и всегда, каждая характеристика не может подходить для всех.

Вещества проявляют металлы, их сплавы. Для них можно выделить набор общих характеристик:

  • ковкость и пластичность;
  • высокие температуры кипения, плавления;
  • электро- и теплопроводность;
  • металлический блеск.

Основания (гидроксиды) сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Химические свойства вещества зависят не только от того, из каких химических элементов оно состоит, но и от структуры молекул вещества (структурная изомерия) и от пространственной конфигурации молекул (конформация , стереоизомерия). Как правило, вещества, имеющие одинаковый состав и структуру, имеют и одинаковые химические свойства, за исключением реакций с веществами другой пространственной конфигурации. Это различие особенно важно в биохимии , например, способность белка к реакции с другими биологически активными веществами может зависеть от способа его сворачивания .

Примеры химических свойств

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Химические свойства" в других словарях:

    Химические свойства - – определяют способность материала к химическим превращениям при контакте с веществами внешней среды (в том числе агрессивной), к сохранению состава и структуры в условиях инертной окружающей среды, химическому взаимодействию компонентов… …

    химические свойства - — EN chemical property Properties of a substance depending on the arrangement of the atoms in the molecule, e.g. bio availability, degradability, persistence, etc. (Source: RRDA)… …

    химические свойства - – совокупность электромагнитных взаимодействий между химическими элементами, приводящих к образованию равновесных устойчивых систем (молекул, ионов, радикалов). Словарь по аналитической химии … Химические термины

    химические свойства - cheminės savybės statusas T sritis automatika atitikmenys: angl. chemical properties vok. chemische Eigenschaften, f rus. химические свойства, n pranc. propriétés chimiques, f … Automatikos terminų žodynas

    Химические свойства спиртов это химические реакции спиртов во взаимодействии с другими веществами. Они определяются в основном наличием гидроксильной группы и строением углеводородной цепи, а также их взаимным влиянием: Чем больше… … Википедия

    Физико-химические свойства - – характеризуют влияние физического состояния материала на протекание определенных химических процессов (например, степень дисперсности материала влияет на кинетику химических реакций). [Косых, А. В. Искусственные и природные строительные… … Энциклопедия терминов, определений и пояснений строительных материалов

    Физико-химические свойства огнеупорного сырья - [огнеупора] –совокупность химического и/или зернового состава огнеупорного сырья [огнеупора], его термомеханических и теплофизических свойств, определяющих область применения. [ГОСТ Р 52918 2008] Рубрика термина: Сырье Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов

    Значимость предмета статьи поставлена под сомнение. Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для… … Википедия

    физические и химические свойства - fizikinės ir cheminės savybės statusas T sritis automatika atitikmenys: angl. physicochemical properties vok. physikalish chemische Eigenschaften, f rus. физические и химические свойства, n pranc. propriétés physico chimiques, f … Automatikos terminų žodynas

    физико-химические свойства - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN physicochemical properties … Справочник технического переводчика

Книги

  • Физико-химические свойства полупроводниковых веществ. Справочник , . В справочнике систематизированы основные свойства чистых неорганических кристаллических, а также некоторых стеклообразных веществ элементарных, двойных, тройных и более сложных…

2NaOH + Zn + 2H 2 O = Na 2 + H 2
2KOH + 2Al + 6H 2 O = 2K + 3H 2

Соли

1. Соль слабой кислоты + сильная кислота = соль сильной кислоты + слабая кислота

Na 2 SiO 3 + 2HNO 3 = 2NaNO 3 + H 2 SiO 3
BaCO 3 + 2HCl = BaCl 2 + H 2 O + CO 2 (H 2 CO 3)

2. Растворимая соль + растворимая соль = нерастворимая соль + соль

Pb(NO 3) 2 + K 2 S = PbS + 2KNO 3
СaCl 2 + Na 2 CO 3 = CaCO 3 + 2NaCl

3. Растворимая соль + щелочь = соль + нерастворимое основание

Cu(NO 3) 2 + 2NaOH = 2NaNO 3 + Cu(OH) 2
2FeCl 3 + 3Ba(OH) 2 = 3BaCl 2 + 2Fe(OH) 3

4. Растворимая соль металла (*) + металл (**) = соль металла (**) + металл (*)

Zn + CuSO 4 = ZnSO 4 + Cu
Cu + 2AgNO 3 = Cu(NO 3) 2 + 2Ag

Важно: 1) металл (**) должен находиться в ряду напряжений левее металла (*), 2) металл (**) НЕ должен реагировать с водой.

Пример 1 Гидроксид цинка может реагировать с каждым веществом в паре:

1) сульфат кальция, оксид серы (VI);
2) гидроксид натрия (р-р), соляная кислота;
3) вода, хлорид натрия;
4) сульфат бария, гидроксид железа (III).

Решение - 2) Гидроксид цинка - амфотерный. Он реагирует как с кислотами, так и со щелочами.

Пример 2 Раствор сульфата меди(II) реагирует с каждым из двух веществ:

1) HCl и H 2 SiO 3 ;
2) H 2 O и Cu(OH) 2 ;
3) O 2 и HNO 3 ;
4) NaOH и BaCl 2 .

Решение - 4) В растворах реакция протекает, если выполняются условия: выпадает осадок, выделяется газ, образуется малодиссоциирующее вещество, например, вода.

Пример 3 Схема превращений Э -> Э 2 О 3 -> Э(ОН) 3 соответствует генетическому ряду:

1) натрий -> оксид натрия -> гидроксид натрия;
2) алюминий -> оксид алюминия -> гидроксид алюминия;
3) кальций -> оксид кальция -> гидроксид кальция;
4) азот -> оксид азота(V) -> азотная кислота.

Решение - 2) По схеме можно выяснить, что элементом является трёхвалентный металл, который образует соответствующие оксид и гидроксид.

Пример 4 Как осуществить следующие превращения:

Ca → Ca(OH) 2 → CaCO 3 → CaO → CaSO 4 → CaCl 2 → Ca ?

Решение:

Ca + 2H 2 O = Ca(OH) 2 + H 2

Ca(OH) 2 + H 2 CO 3 = CaCO 3 + 2H 2 O

CaCO 3 == t CaO + CO 2

CaO + SO 3 = CaSO 4

CaSO 4 + BaCl 2 = CaCl 2 + BaSO 4

CaCl 2 + Ba = BaCl 2 + Ca

Задания по теме 5

161- 170. Подтвердите уравнениями реакций в молекулярном и ионном виде кислотные свойства оксидов. Назовите полученные вещества.

181-190. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения веществ:

Схема превращений
Калий→гидроксид калия →карбонат калия→нитрат калия→сульфат калия
Цинк→хлорид цинка→гидроксид цинка→оксид цинка→нитрат цинка
Медь(II)→оксид меди→сульфат меди→гидроксид меди →оксид меди→хлорид меди
Углерод→углекислый газ→карбонат натрия→карбонат кальция→углекислый газ
Водород→вода→гидроксид натрия→карбонат натрия→нитрат натрия
Сера→сероводород→сульфид натрия→сульфид железа(II)→сероводород
Натрий→гидроксид натрия→сульфид натрия→хлорид натрия→сульфат натрия
Магний→сульфат магния→гидроксид магния→оксид магния→хлорид магния
Свинец→оксид свинца(II)→нитрат свинца→гидроксид свинца→оксид свинца→сульфат свинца
Сера→сероводород→сульфид калия→хлорид калия→соляная кислота
Кальций→гидроксид кальция→карбонат кальция→нитрат кальция→азотная кислота
Алюминий→сульфат алюминия→гидроксид алюминия→оксид алюминия →нитрат алюминия
Сера→оксид серы(IV)→сернистая кислота→сульфит натрия→сернистая кислота
Кислород→оксид алюминия→сульфат алюминия→гидроксид алюминия →метаалюминат натрия
Алюминий→хлорид алюминия→нитрат алюминия→гидроксид алюминия →сульфат алюминия
Медь→хлорид меди(II)→медь→оксид меди(II)→нитрат меди
Железо→хлорид железа(II)→гидроксид железа(II)→ сульфат железа(II)→железо
Железо→хлорид железа(III)→нитрат железа(III)→сульфат железа(III)→железо
Алюминий→нитрат алюминия→гидроксид алюминия→оксид алюминия →алюминат натрия→сульфат алюминия
Цинк→тетрагидроксоцинкат натрия→нитрат цинка→гидроксид цинка→оксид цинка→цинкат калия

Химические реакции.

Одним из типов взаимодействия атомов, молекул и ионов являются реакции, в которых одни реагенты отдают, а другие-приобретают электроны . В ходе таких реакций, называемых окислительно-восстановительными , атомы одного или нескольких элементов изменяют свою степень окисления .

Под степенью окисления понимают условный заряд, который возник бы на данном атоме, если считать, что все связи в частице (молекуле, сложном ионе) - ионные . При этом полагают, что электроны полностью смещены к более электроотрицательному атому, который сильнее их притягивает. Понятие о степени окисления является формальным и часто не совпадает ни с эффективными зарядами атомов в соединениях, ни с фактическим числом связей, которые образует атом. Однако, оно удобно при составлении уравнений окислительно-восстановительных процессов и полезно при описании окислительно-восстановительных свойств химических соединений.

Степени окисления атомов рассчитывают, исходя из следующих основных правил:Степень окисления обозначают надстрочным индексом над атомом, причем сначала указывают ее знак, а затем - величину. Она может быть как целым, так и дробным числом. Например, если в H 2 O и H 2 O2 для кислорода степень окисления равна (-2) и (-1), то в KO2и KO3- соответственно (-1/2) и (-1/3).

1) степень окисления атома в простых веществах равна нулю, например:

Na 0 ; H 2 0 ; Cl 0 2; O 2 0 и т.д.;

2) степень окисления простого иона, например: Na+; Ca +2 ; Fe+3; Cl-; S-2 равна его заряду, т.е., соответственно, (+1); (+2); (+3); (-1); (-2);

3) в большинстве соединений степень окисления атома водорода равна (+1) (кроме гидридов Me - LiH; CaH и др., в которых она равна (-1));

4) степень окисления атома кислорода в большинстве соединений равна

(-2), кроме пероксидов (-1), фторида кислорода OF2(+2) и др.;

5) алгебраическая сумма значений степеней окисления всех атомов в моле-куле равна нулю, а в сложном ионе - заряду этого иона. Например, степень окисления азота в молекуле азотной кислоты - HNO3определяют следующим образом: степень окисления водорода равна (+1), кислорода (-2), азота (x). Составив алгебраическое уравнение: (+1) + x + (-2)·3 = 0, получают x = +5.

Возвращаясь к определению окислительно-восстановительных реакций, отметим, что окислением называют процесс отдачи электронов, а восстановлением - процесс их присоединения. Окислитель - вещество, содержащее элемент, у которого в ходе реакции степень окисления понижается. Восстановитель - вещество, содержащее элемент, у которого в ходе реакции степень окисления повышается. Следует подчеркнуть, что реакции окисления и восстановления невозможны одна без другой (сопряженные реакции ). Таким образом, в результате окислительно-восстановительной реакции окислитель восстанавливается, а восстановитель - окисляется.

Типичные восстановители:

1) металлы, например: K, Mg, Al, Zn и некоторые неметаллы в свободном состоянии - C, H (в большинстве случаев) и др.;

2) простые ионы, соответствующие низшей степени окисления элемента: S2-; I; Cl-и др.;

3) сложные ионы и молекулы, содержащие атомы в низшей степени окис-

ления: N в ионе NH4, S в молекуле H 2 S, I в молекуле KI и др.

Типичные окислители:

1) атомы и молекулы некоторых неметаллов: F2; Cl и O2(в большинстве случаев) и др.;

2) простые ионы, соответствующие высшим степеням окисления элемента: Hg+2; Au+3; Pb и др.;

3) сложные ионы и молекулы, содержащие атомы в высшей степени окисления: Pb +4 в PbO2; N +5 в HNO3; S +6 в H SO4; Cr +6 в Cr2O7 2- или CrO4 2- ; Mn +7 в MnO - и др.

Некоторые вещества обладают двойственной окислительно - восстановительной функцией , проявляя (в зависимости от условий) либо окислительные, либо восстановительные свойства. К ним относят молекулы некоторых веществ, простые и сложные ионы, в которых атомы находятся в промежуточной степени окисления: C +2 в молекуле CO, О - в молекуле H 2 O 2 , в S +4 ионе SO 3 2- , в ионе N +3 в ионе NO 2 - и др.

В окислительно-восстановительной реакции происходит передача электронов от восстановителя к окислителю.

Пример 1 Напишите уравнение реакции окисления дисульфида железа (II) концентрированной азотной кислотой. Составьте: схемы электронного и электронно-ионного баланса.

Решение. НNО 3 - сильный окислитель, поэтому сера будет окисляться до максимальной степени окисления S +6 , а железо до Fe +3 , при этом НNО 3 может восстанавливаться до NO или NO 2 . Рассмотрим случай восстановления до NО 2 .

FеS 2 + НNO 3(конц) → Fе(NO 3) 3 + Н 2 SО 4 + NО 2 .

Где будет находиться Н 2 О (в левой или правой части), пока неиз-вестно.

Уравняем данную реакцию методом электронного баланса. Процесс восстановления описывается схемой:

N +5 + e → N +4

В полуреакцию окисления вступают сразу два элемента - Fe и S. Железо в дисульфиде имеет степень окисления +2, а сера -1. Не-обходимо учесть, что на один атом Fе приходится два атома S:

Fe +2 - e → Fe +3

2S - - 14e → 2S +6 .

Вместе железо и сера отдают 15 электронов.

Полный баланс имеет вид:

15 молекул НNО 3 идут на окисление FеS 2 , и еще 3 молекулы НNО 3 необходимы для образования Fе(NО 3) 3:

FеS 2 + 18НNО 3 → Fе(NО 3) 3 + 2Н 2 SО 4 + 15NО 2 .

Чтобы уравнять водород и кислород, в правую часть надо доба-вить 7 молекул Н 2 О:

FeS 2 + 18НNО 3(конц) = Fе(NО 3) 3 + 2Н 2 SО 4 + 15NО 2 + 7Н 2 О.

Используем теперь метод электронно-ионного баланса. Рас-смотрим полуреакцию окисления. Молекула FеS 2 превращается в ион Fе 3+ (Fе(NО 3) 3 полностью диссоциирует на ионы) и два иона SO 4 2- (диссоциация H 2 SO 4):

FeS 2 → Fe 3+ + 2SO 2 4- .

Для того, чтобы уравнять кислород, в левую часть, добавим 8 молекул H 2 O, а в правую - 16 ионов Н + (среда кислая!):

FeS 2 + 8H 2 O → Fe 3+ + 2SO 4 2- + 16H + .

Заряд левой части равен 0, заряд правой +15, поэтому FеS 2 дол-жен отдать 15 электронов:

FеS 2 + 8Н 2 О - 15е → Fе 3+ + 2SО 4 2- + 16Н + .

Рассмотрим теперь полуреакцию восстановления нитрат-иона:

NO -3 → NO 2 .

Необходимо отнять у NО 3 - один атом О. Для этого к левой части добавим 2 иона Н + (кислая среда), а к правой — одну молекулу Н 2 О:

NО 3 - + 2Н + → NО 2 + Н 2 О.

Для уравнивания заряда к левой части (заряд +1) добавим один электрон:

NО 3 - + 2Н + + е → NO 2 + Н 2 О.

Полный электронно-ионный баланс имеет вид:

Сократив обе части на 16Н + и 8Н 2 О, получим сокращенное ион-ное уравнение окислительно-восстановительной реакции:

FеS 2 + 15NО 3 - + 14Н + = Fе 3+ + 2SО 4 2- + 15NО 2 + 7Н 2 О.

Добавив в обе части уравнения соответствующее количество ионов по три иона NО 3 - и Н + , находим молекулярное уравнение реакции:

FеS 2 + 18НNО 3(конц) = Fе(NО 3) 3 + 2Н 2 SО 4 + 15NО 2 + 7Н 2 О.

Химическая кинетика изучает скорости и механизмы химических процессов, а также зависимость их от различных факторов. Скорость химических реакций зависит от: 1) природы реагирующих веществ; 2) условий протекания реакции: концентрации реагирующих веществ; давления, если в реакции участвуют газообразные вещества; температуры; присутствия катализатора.

ПРИМЕР 2 . Вычислите, во сколько раз возрастет скорость реакции при увеличении температуры на 40 °, если температурный коэффициент скорости этой реакции равен 3.

РЕШЕНИЕ . Зависимость скорости реакции от температуры выражается эмпирическим правилом Вант-Гоффа , согласно которому при увеличении температуры на каждые 10 ° скорость большинства гомогенных реакций увеличивается в 2-4 раза, или

где - температурный коэффициент скорости реакции, часто принимает значения 2-4, показывает, во сколько раз увеличится скорость реакции при повышении температуры на 10 градусов;

v T 1 , v T2 - скорости химической реакции при температурах T1и T2. В данном примере:

Скорость реакции возрастёт в 81 раз

ПРИМЕР 3. Окисление оксида углерода (II) и графита протекает по уравнениям: а) 2СО(г)+ О= 2СО2(г);

б) 2С(т)+ О2(г)= 2СО(г).

Вычислите, как изменятся скорости этих реакций, если увеличить в три раза: 1) концентрацию кислорода; 2) объем реакционного пространства; 3) давление в системе.

Решение: Реакция а) протекает в гомогенной системе - все вещества находятся в одной фазе (все вещества газы), реакция б) протекает в гетерогенной системе - реагирующие вещества находятся в разных фазах (О2и СО - газы, С - твердое). Поэтому скорости реакций для этих систем согласно ЗДМ равны:

а) 2СО(г)+ О2(г) = 2СО; б) 2С(т) + О2(г) = 2СО(г);

а) б)

После увеличения концентрации кислорода скорости реакций а) и б) будут равны:

a) б)

Увеличение скорости реакции по отношению к первоначальной определяется соотношением:

А)
б)

Следовательно, после увеличения концентрации кислорода в 3 раза скорости реакций а) и б) возрастут в 3 раза.

2) Увеличение объема системы в 3 раза вызовет уменьшение концентрации каждого газообразного вещества в 3 раза. Поэтому скорости реакций уменьшатся соответственно в 27 раз (а) и в 3 раза (б):

А)
б)

3) Увеличение давления в системе в 3 раза вызовет уменьшение объема в 3 раза и увеличение концентрации газообразных веществ в 3 раза. Поэтому:

А)
б)

ПРИМЕР 4. Реакция разложения пентахлорида фосфора протекает по уравнению:

PCl5(г)= PCl3(г)+ Cl2(г); H = +92,59 кДж.

В каком направлении сместится равновесие этой реакции при: а) увеличении концетрации PCl5; б) увеличении концентрации Cl2; в) повышении давления; г) понижении температуры; д) введении катализатора.

РЕШЕНИЕ. Смещением или сдвигом химического равновесия называется изменение равновесных концентраций реагирующих веществ в результате изменения одного из условий протекания реакции. Направление смещения равновесия определяется по принципу Ле Шателье : если на систему, находящуюся в равновесии оказать какое-либо внешнее воздействие (изменить концентрацию, давление, температуру), то равновесие сместится в сторону той реакции (прямой или обратной), которая противодействует оказанному воздействию .

а) Увеличение концентрации реагентов (PCl5) увеличивает скорость прямой реакции по сравнению со скоростью обратной реакции, и равновесие смещается в сторону прямой реакции, т.е. вправо;

б) увеличение концентрации прдуктов (Cl2) реакции увеличивает скорость обратной реакции по сравнению со скоростью прямой реакции, и равновесие смещается влево;

в) увеличение давления смещает равновесие в сторону реакции, идущей с образованием меньшего количества газообразных веществ . В данном примере прямая реакция сопровождается образованием 2 моль газов (1 моль PCl3и 1 моль Cl2), а обратная - образованием 1 моль PCl5. Поэтому повышение давления приведет к смещению равновесия влево, т.е. в сторону обратной реакции;

г) так как прямая реакция протекает с поглощением теплоты), то понижение температуры смещает равновесие в сторону обратной (экзотермической реакции) ;

д) введение в систему катализатора не влияет на смещение равновесия , т.к. одинаково увеличивает скорость прямой и обратной реакций.

Задания по теме 6

201-220. По данным схемам составьте уравнения окислительно-восстановительных реакций, укажите окислитель и восстановитель:

Схема реакции
KBr+KBrO 3 +H 2 SO 4 →Br 2 +K 2 SO 4 +H 2 O
КСlO 3 + Na 2 SO 3 →Na 2 SO 4 +MnO 2 +KOH
PbS+HNO 3 →S+Pb(NO 3) 2 +NO+H 2 O
KMnO 4 + Na 2 SO 3 +KOH→K 2 MnO 4 + Na 2 SO 4 + H 2 O
P+ HNO 3 + H 2 O→H 3 PO 4 +NO
Cu 2 O+ HNO 3 →Cu(NO 3) 2 +NO+ H 2 O
КСlO 3 + Na 2 SO 3 →S+ K 2 SO 4 + MnSO 4 + H 2 O
HNO 3 +Ca→NH 4 NO 3 +Ca(NO 3) 2 +H 2 O
NaCrO 2 +PbO 2 +NaOH→Na 2 CrO 4 +Na 2 PbO 2 + H 2 O
K 2 Cr 2 O 7 +H 2 S+ H 2 SO 4 →S+Cr 2 (SO 4) 3 + K 2 SO 4 + H 2 O
КСlO 3 + Na 2 SO 3 →КСl+ Na 2 SO 4
KMnO 4 +HBr→Br 2 + KBr+MnBr 2 + H 2 O
H 3 AsO 3 + KMnO 4 + H 2 SO 4 →H 3 AsO 4 + MnSO 4 + K 2 SO 4 + H 2 O
P+HClO 3 + H 2 O→ H 3 PO 4 +HCl
NaCrO 2 + Br 2 + NaOH→ Na 2 CrO 4 +NaBr+ H 2 O
FeS+ HNO 3 →Fe(NO 3) 2 +S+ NO+ H 2 O
HNO 3 +Zn→N 2 O+ Zn(NO 3) 2 + H 2 O
FeSO 4 + КСlO 3 + H 2 SO 4 →Fe 2 (SO 4) 3 +КСl+ H 2 O
K 2 Cr 2 O 7 +HCl→Cl 2 +CrCl 3 + КСl+ H 2 O
Au+ HNO 3 + HCl→AuCl 3 +NO+ H 2 O

221-230. Во сколько раз изменится скорость прямой реакции, если изменить температурный режим с Т 1 до Т 2 ? Температурный коэффициент приведен в таблице.

Т 1 , К
Т 2 , К
γ

231-240. Рассчитайте, во сколько раз изменится скорость реакции, если изменить условия протекания процесса.

236-240. Как надо изменить а) температуру, б) давление, в) концентрацию, чтобы сместить химическое равновесие в сторону прямой реакции?

Металлы и неметаллы.

Совокупность ОВР, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является «восстановителем». На аноде происходит отдача электронов анионами, поэтому анод является «окислителем». При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и восстановительных процесса:

- на аноде — окисление анионов и гидроксид-ионов,

- на катоде — восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются следующие:

- на аноде — окисление анионов и гидроксид ионов, анодное растворение металла — материала анода;

- на катоде - восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода. При выборе наиболее вероятного процесса на аноде и катоде исходят из положения, что протекает та реакция, которая требует наименьшей затраты энергии. При электролизе растворов солей с инертным электродом используют следующие правила.

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих анионы F - , SО 4 2- , NO 3 - , РO 4 3- , ОН - выделяется кислород;

б) при окислении галогенид-ионов выделяются свободные галогены;

в) при окислении анионов органических кислот происходит процесс:

2RCOO - - 2е → R-R + 2СО 2 .

2. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl 3+ , на катоде выделяется водород; если ион расположен правее водорода, то выделяется металл.

3. При электролизе растворов солей, содержащих ионы, расположенные между Аl 3+ и Н + на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.

Зависимость количества вещества, образовавшегося при электролизе, от времени и силы тока описывается обобщенным законом Фарадея:

m = (Э / F) . I . t = (М / (n . F)) . I . t,

где m — масса образовавшегося при электролизе вещества (г); Э — эквивалентная масса вещества (г/моль); М — молярная масса вещества (г/моль); n — количество отдаваемых или принимаем электронов; I — сила тока (А); t — продолжительность процесса (с); F — константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества (F= 96500 Кл/ моль = 26,8 А. ч / моль).

Пример 1 Электролиз расплава хлорида натрия:

NaCl = Na + + Cl - ;

катод (-) (Na +): Na + + е = Na 0 ,

анод (-) (Cl -): Cl - - е = Cl 0 , 2Cl 0 = Cl 2 ;

2NaCl = 2Na + Cl 2 .

Пример 2 Электролиз раствора хлорида натрия:

NaCl = Na + + Cl - ,

H 2 O = Н + + ОН - ;

катод (-) (Na + ; Н +): H + + е = H 0 , 2H 0 = H 2

(2H 2 O + 2е = H 2 + 2OH -),

анод (+) (Cl - ; OН -): Cl - - е = Cl 0 , 2Cl 0 = Cl 2 ;

2NaCl + 2H 2 O = 2NaOH + Cl 2 + H 2 .

Пример 3 Электролиз раствора нитрата меди(II):

Cu(NO 3) 2 = Cu 2+ + NO 3 --

Н 2 O = H + + OH - ;

катод (-) (Cu 2+ ; Н +): Cu 2+ + 2е = Cu 0 ,

анод (+) (OН -): OH - - е = OH 0 ,

4H 0 = O 2 + 2H 2 O;

2Cu(NO 3) 2 + 2H 2 O = 2Cu + O 2 + 4HNO 3 .

Задания по теме 7

241-250. Составьте электронные уравнения процессов, происходящих на инертных электродах при электролизе а) расплава, б) раствора вещества:

Вещество NaOH КСl AgNO 3 Cu(NO 3) 2 FeSO 4 K 2 S KOH Fe(NO 3) 2 ZnSO 4 Zn(NO 3) 2

251-260. Какие вещества и в каком количестве выделятся на угольных электродах при электролизе рёаствора в течение времени t(ч) при силе тока I(A).

271-280. Составьте уравнение реакции между веществами, учитывая, что переход электронов максимальный.

Вещества Вещества
P+HNO 3 (конц) H 2 S+ H 2 SO 4 (конц)
Р+H 2 SO 4 (конц) PH 3 +HNO 3 (конц)
S+HNO 3 (конц) PH 3 + H 2 SO 4 (конц)
S+ H 2 SO 4 (конц) HClO+HNO 3 (конц)
H 2 S+HNO 3 (конц) HClO+ H 2 SO 4 (конц)

Основная :

1. Ерохин Ю.М. «Химия»: Учебник для средних профессиональных учебных заведений.- М.: Издательский центр «Академия», 2004.

2. Рудзитис Г.Е., Фельдман Ф.Г. «Химия» 10 кл.-М.: Просвещение. 1995.

3. Рудзитис Г.Е., Фельдман Ф.Г. «Химия» 11 кл. -М.: Просвещение. 1995.

4. Ахметов М.С. «Лабораторные и семинарские занятия по общей и неорганической химии» М.: Высшая школа. 2002.

Дополнительная :

1. Петров М.М., Михилев Л.А., Кукушкин Ю.Н. «Неорганическая химия». М.: Химия. 1989.

2. Потапов В.М. «Органическая химия».- М.: Просвещение.1983.

3. Михилев Л.А., Пассет Н.Ф., Федотова М.И. «Задачи и упражнения по неорганической химии». М.: Химия. 1989.

4. Потапов В.М., Татаринчик С.Н., Аверина А.В. «Задачи и упражнения по органической химии» -М.: Химия. 1989.

5. Хомченко И.Г. «Общая химия». -М.: Новая волна. -ОНИКС 1999.

6. Хомченко Г.П. «Сборник задач по химии для поступающих в Вуз». -М.: Новая волна. 1999.