Влияние железного груза на магнитное поле судна. Судовой магнетизм

Стальной набор корпуса судна, его обшивка приобретают магнитные свойства с момента постройки. В магнитном поле Земли все продольные, поперечные и вертикальные связи судна намагничиваются неодинаково. Судовое железо в магнитном отношении принято делить на твердое и мягкое.

Твердое судовое железо обладает свойством постоянных магнитов. Постоянный магнетизм, приобретенный судном во время постройки, сохраняется годами. Мягкое в магнитном отношении судовое железо не «задерживает» магнитное состояние надолго Оно обладает индуктивным магнетизмом, зависящим от положения корпуса судна относительно магнитного меридиана.

Рис. 20.


Таким образом, на магнитную стрелку компаса, установленного на судне, оказывают влияние магнитные силы твердого и мягкого в магнитном отношении железа, причем действие их различно. Кроме того, в результате действия магнитных сил, возникающих от магнитного поля, создаваемого различными работающими судовыми агрегатами, контурами с током, стрелка компаса отклоняется от магнитного меридиана. Вертикальную плоскость, проходящую через полюсы подвешенной за центр тяжести магнитной стрелки на судне, имеющей свободное вращение вокруг вертикальной оси, называют плоскостью компасного меридиана в данной точке судна. Компасный меридиан - это воображаемая линия пересечения плоскости истинного горизонта наблюдателя с плоскостью компасного меридиана, проходящей через данную точку на судне.

Угол в плоскости истинного горизонта наблюдателя между магнитным и компасным меридианами называют девиацией магнитного компаса (б). Этот угол отсчитывают от нордовой части магнитного меридиана к O st или W от 0 до 180°. Девиацию называют остовой (восточной), если северная часть компасного меридиана отклоняется от северной части магнитного меридиана к востоку, западной (вестовой), если северная часть компасного меридиана отклоняется от северной части магнитного меридиана к западу. Остовой девиации приписывают знак «плюс», а вестовой - знак «минус» (рис. 20). Величина и знак девиации зависят от влияния, которое оказывает на магнитную стрелку компаса магнитное поле судна совместно с земным магнитным полем.

По характеру возникновения различают полукруговую, четвертную и креновую девиации. Полукруговая создается твердым в магнитном отношении железом, четвертная - мягким, креновая возникает во время качки судна.

Значительная девиация создает большие неудобства при пользовании магнитным компасом. Поэтому на судах уничтожают девиацию путем искусственного создания в центре компаса сил, одинаковых по характеру, равных по величине и противоположных по направлению силам, вызывающим девиацию. Для этого бруски твердого и мягкого железа располагают около компаса в специальных приспособлениях. Компас будет автономным и надежным курсо-указателем в том случае, если силы, вызывающие девиацию, компенсируются.

Уничтожение девиации компаса на судне - трудоемкая работа, обычно выполняемая специалистами-девиаторами, а иногда и судоводителями.

После уничтожения девиации у судовых магнитных компасов определяют остаточную девиацию, которая обычно не превышает 2-3°. Ее находят из наблюдений на восьми равноотстоящих главных и четвертных курсах.

Для определения остаточной девиации компасов существует

Несколько способов. Чаще всего ее определяют по:

Створам;

Пеленгу отдаленного предмета;

Взаимным пеленгам;

Пеленгам небесных светил.

Простой и наиболее точный способ - это определение девиации по створам. Для этого, следуя одним из курсов, пересекают линию створных знаков, магнитное направление которых известно. В момент пересечения створов, по магнитному компасу замечают компасный пеленг створов.

Девиация на данном курсе определится из соотношений:

Б = ОМП - ОКП; б = МП -КП,

Где ОМП - отсчет магнитного пеленга;

ОКП - отсчет компасного пеленга.

Определив остаточную девиацию, по специальным формулам вычисляют таблицу девиации для компасных курсов через 15 или 10° (табл. 1).

Правилами технической эксплуатации предусмотрено уничтожение девиации магнитного компаса не реже раза в шесть месяцев. Если на судне производились ремонтные работы с применением электросварки, а также после погрузки грузов, изменяющих магнитное состояние судна (металлические конструкции, трубы, рельсы и т. п.), необходимо дополнительно уничтожить девиацию. В этих случаях при выдаче капитану плана-задания на рейс следует учитывать время, необходимое для уничтожения и определения девиации компаса. Обычно на девиационные работы требуется 2-4 ч. Судно приводят в походное состояние, трюмы закрывают, грузовые стрелы укладывают по-походному, палубный груз принайтовывают, а затем выходят на рейд, оборудованный специальными створами, и девиатор производит все работы по уничтожению девиации.

Магнитные компасы (МК) являются резервными и контролирующими курсоуказателями. В случае отказа гирокомпаса управление производится по магнитному компасу, а при исправном гирокомпасе надлежит каждый час сличать показания гирокомпаса с магнитным компасом для контроля правильности работы гирокомпаса.

Под действием магнитного поля Земли и магнитного поля судна картушка магнитного компаса устанавливается в плоскости компасного меридиана, положение которого отличается от положения плоскости истинного меридиана на величину поправки магнитного компаса. Эта поправка является суммой девиации МК и магнитного склонения.

Магнитное склонение d - это угол между плоскостями истинного и магнитного меридиана, его можно получить с карты, приводя к году плавания.
Девиация магнитного компаса - это угол между плоскостями магнитного и компасного меридиана.

Причиной появления девиации являются магнитное поле судна, которое искажает магнитное поле Земли. Судовые металлические конструкции по своим магнитным свойствам подразделяются на твердое и мягкое в магнитном отношении железа.

Под твердым судовым железом подразумеваются металлические конструкции судна, которые 1 раз намагнитившись в магнитном поле Земли, больше не перемагничиваются, т.е. их можно рассматривать как постоянные магниты.

Твердое судовое железо создает постоянное магнитное поле судна. Мягкое судовое железо обладает индуктивным магнетизмом, т.е. при изменении его положения относительно магнитного поля Земли происходит перемагничивание мягкого судового железа и это железо создает переменное магнитное поле судна, которое изменяется при изменении курса судна.

Таким образом, твердое и мягкое судовое железо создают девиацию магнитного компаса, которая выражается основной формулой девиации:

Анализ этой формулы показывает, что девиация имеет постоянную составляющую (девиацию), полукруговую девиацию, зависящую от курса судна и четвертную девиацию, которая зависит от удвоенного курса 2K.

Постоянная и четвертная девиации, соответственно с коэффициентами A, D, E возникают из-за мягкого судового железа. А полукруговая девиация с коэффициентами B и C вызывается твердым судовым железом.
Уничтожение постоянной и четвертной девиации производится мягким железом, из которого изготавливаются магнитные компенсаторы в виде шаров или цилиндров. Эти компенсаторы устанавливаются вблизи картушки магнитного компаса и создают переменное магнитное поле, которое компенсирует переменное магнитное поле судна.

Постоянную четвертную девиацию уничтожают по специальной методике девиаторы при установке МК на судне. Так как, четвертная и постоянная девиация мало изменяются, то их повторное уничтожение не производится. Полукруговая девиация возникает из-за твердого судового железа, создающего постоянное магнитное поле судна, поэтому ее уничтожение производится с помощью магнитов-уничтожителей, которые расположены в девиационном приборе магнитного компаса.
Так как полукруговая девиация вызывается продольной магнитной силой и поперечной силой, то имеется 2 пары магнитов-уничтожителей для компенсации данных сил.
Одна пара расположена в диаметральной плоскости судна (продольные магниты-уничтожители(для уничтожения силы)), а вторая пара - перпендикулярно диаметральной плоскости.

Поперечные магниты - уничтожители для уничтожения силы.

Положение магнитов-уничтожителей подбирается так, чтобы они компенсировали постоянное магнитное поле судна, т.е. силы и.

Полукруговая девиация является изменчивой и необходимо регулярное ее уничтожение в случае, если она изменяется больше, чем на 3 градуса. Рекомендуется проверять и уничтожать полукруговую девиацию ежегодно.

Для уничтожения полукруговой девиации применяют способ Эри. Он выполняется на 4 главных курсах.
Для уничтожения поперечной магнитной силы необходимо:
1) Лечь на магнитный курс 0 градусов.

2) Отметить по магнитному компасу девиацию на этом курсе и с помощью поперечных магнитов-уничтожителей довести эту девиацию до нуля.

3) Лечь на магнитный курс 180. Наблюдаемую девиацию по МК с помощью магнитов-уничтожителей девиацию уменьшить на половину. В этом случае магнитная сила уничтожена полностью.

4) Для уничтожения продольной силы необходимо лечь на магнитный курс 90 и с помощью продольных магнитов-уничтожителей довести наблюдаемую девиацию до 0.

5) Необходимо лечь на магнитный курс 270 и с помощью продольных магнитных магнитов-уничтожителей наблюдаемую девиацию уменьшить на половину. В этому случае сила уничтожена полностью.

На главные магнитные курсы можно ложится с помощью гирокомпаса, зная его поправку и магнитное склонение d.

Величина ГКК для заданного магнитного курса МК выбирается по формуле:

После уничтожения полукруговой девиации необходимо лечь на 8 главных и четвертных компасных курсов по магнитному компасу и определить величину остаточной девиации на каждом из курсов. На каждом компасном курсе замечают значение ГКК и значение девиации рассчитывается по формуле:

По полученным значениям девиации на 8 курсах, рассчитывают коэффициенты девиации A, B, C, D, E.

Затем по этим коэффициентам с помощью основной девиации рассчитывается таблица остаточной девиации с интервалом через 10 градусов курса.


Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области судового магнетизма.

Термины, установленные стандартом, обязательны для применения в документации всех видов, научно-технической, учебной и справочной литературе.

Для каждого понятия установлен один стандартизованный термин. Применение терминов-синонимов стандартизованного термина запрещается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены «Ндп».

Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования. Установленные определения можно, при необходимости, изменять по форме изложения, не допуская нарушения границ понятий.

В стандарте в качестве справочных приведены иностранные эквиваленты для ряда стандартизованных терминов на немецком (D), английском (Е) и французском (F) языках.


В стандарте приведены алфавитные указатели содержащихся в нем терминов на русском языке и их иностранных эквивалентов.

В стандарте имеется справочное приложение, содержащее общие понятия, применяемые в судовом магнетизме.

Стандартизованные термины набраны полужирным шрифтом, их краткая форма - светлым, а недопустимые синонимы - курсивом.

Определение

1. Судовой магнетизм

Е. Ship?s magnetism

Раздел магнетизма, исследующий и применяющий магнетизм судна, принципы построения судовых магнитных систем и технические средства, образующие эти системы

2. Магнетизм судна

Совокупность свойств судна и явлений, связанных с магнитным взаимодействием частей судна, по которым текут электрические токи, и намагниченных частей, обладающих магнитным моментом, и осуществляющихся магнитным полем.

Примечания:

1. Магнетизм судна может быть постоянным, полупостоянным, индуктированным, электрических токов.

2. Под магнетизмом судна подразумевается также магнетизм корабля, судовой конструкции или судового механизма

3. Судовое железо

Материалы конструкций и оборудования судна, способные приобретать магнетизм

4. Ферромагнитные массы судна

Ферромагнитные массы

Е. Ferromagnetic masses

F. Masses ferromagnetiques

Судовое железо, способное приобретать постоянный, полупостоянный, индуктированный магнетизм

Примечание. В зависимости от вида приобретаемого магнетизма ферромагнитные массы судна делятся на твердое, полутвердое и мягкое железо

5. Проводящие массы судна

Проводящие массы

Е. Permeable masses

F. Masses permeables

Судовое железо, способное приобретать магнетизм электрических токов

Совокупность магнитных моментов, создаваемых судовым железом

7. Магнитное состояние судна

Магнитное состояние

Е. Ship magnetic state

F. Etat magnetique du navire

Состояние судна, определяемое совокупностью магнитной нагрузки, коэрцитивности и внутренних магнитных полей

8. Магнитная предыстория судна

Магнитная предыстория

Процесс приобретения судном магнитного состояния, определяемого через предшествующие намагничивания и перемагничивания при энергетических воздействиях

9. Магнитная индукция на судне

Векторная величина, характеризующая плотность магнитного потока на судне или вблизи него

10. Девиация геомагнитного поля на судне

Девиация

Отклонение элементов вектора магнитной индукции на судне от соответствующих элементов полного вектора геомагнитного поля

11. Тензор магнитной деформации

Величина, характеризующая девиацию геомагнитного поля в точках на судне и определяемая магнитной нагрузкой судна

12. Нестабильность магнитной величины

По ГОСТ 19693-74

13. Неоднородность магнитной индукции на судне

Максимальное отклонение элемента вектора магнитного поля в определенной области на судне от его среднего значения в заданный момент времени

14. Магнитное направление носа судна

Магнитное направление

D. Richtung des Schiffs (Anliegender Kurs)

Направление носа судна, измеряемое углом в горизонтальной плоскости между северной частью плоскости магнитного меридиана и носовой частью диаметральной плоскости судна

15. Судовой магнитный компас

Магнитный компас

E. Ship magnetic compass

F. Compas magnetique du navire

D. Schiffsmagnetkompass

По ГОСТ 21063-81

16. Тесламетр

По ГОСТ 20906-75

17. Дифференциальный тесламетр

По ГОСТ 20906-75

18. Магнитный судовой испытательный стенд

Испытательный стенд, предназначенный для определения магнитных характеристик судна и (или) судовых магнитных систем и их частей.

Примечание. Магнитный испытательный стенд размещается в месте с известным магнитным полем

19. Компенсационное устройство магнетизма судна

Часть судовой магнитной системы, включающая технические средства для снижения магнетизма судна в местах расположения магниточувствительных элементов

20. Магнитный компенсатор

Элемент компенсационного устройства магнетизма судна, создающий компенсирующее магнитное поле в заданном направлении

21. Магнит-уничтожитель

Магнитный компенсатор в виде постоянного магнита

22. Креновой магнит

Магнит-уничтожитель для компенсации вертикального остаточного магнетизма

23. Широтный компенсатор

Ндп. Флиндерсбар

Е. Flinder?s bar

F. Barreau de Flinders

D. Flinders - Stange

Магнитный компенсатор вертикального индуктированного магнетизма

24. Электромагнитный компенсатор

Ндп. Компенсатор электромагнитных полей

Магнитный компенсатор, предназначенный для снижения магнетизма судна электрическим током

25. Маломагнитное судно

Судно, удовлетворяющее техническим требованиям по маломагнитности.

Примечание. Судно строится из слабомагнитных и немагнитных материалов

26. Определение девиации геомагнитного поля на судне

Е. Deviation finding

F. Relevage de la deviation

D. Deviationsbestimmung

Процесс определения величины и знака девиации геомагнитного поля на судне на заданном магнитном курсе судна

27. Магнитная обработка судна

Магнитная обработка

Обработка судна, с целью приведения судна в заданное магнитное состояние

28. Размагничивание судна

F. Demagnetisation du navire

D. Magnetischer Eigenschutz (MES)

Нейтрализация магнитного поля судна.

Примечание. Размагничивание судна производится с целью снижения девиации геомагнитного поля

29. Девиация судового магнитного компаса

Отклонение показаний судового магнитного компаса, определяемое углом в горизонтальной плоскости между магнитным Севером и компасным Севером, обусловленное девиацией магнитного поля на судне

30. Девиация тесламетра

Отклонение показаний судового тесламетра, обусловленное девиацией геомагнитного поля на судне

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА РУССКОМ ЯЗЫКЕ


Индукция на судне магнитная 9

Компас судовой магнитный 15

Компас магнитный судовой 15

Компенсатор магнитный 20

Компенсатор широтный 23


Магнит-уничтожитель 21

Массы проводящие 5

Массы судна проводящие 5

Массы судна ферромагнитные 4

Массы ферромагнитные 4

6

Направление магнитное 14

Направление носа судна магнитное 14

Неоднородность магнитной индукции на судне 13

Нестабильность магнитной величины 12

Обработка магнитная 27

Обработка судна магнитная 27

Определение девиации геомагнитного поля на судне 26

Предыстория магнитная 8

Предыстория судна магнитная 8

Размагничивание судна 28

Состояние магнитное 7

Состояние судна магнитное 7

Стенд испытательный судовой магнитный 18

Стенд испытательный магнитный судовой 18

Судно маломагнитное 25

Тензор магнитной деформации 11

Тесламетр 16

Тесламетр дифференциальный 17

Устройство магнетизма судна компенсационное 19

Флиндерсбар 23

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА АНГЛИЙСКОМ ЯЗЫКЕ

Deviation finding 26

Ferromagnetic masses 4

Magnetic testing stand 18

Permeable masses 5

Ship magnetic compass 15

Ship magnetic state 7

Ships magnetism 1

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА ФРАНЦУЗСКОМ ЯЗЫКЕ

Banc d?essais magnetique 18

Barreau de Flinders 23

Compas magnetique du navire 15

Demagnetisation du navire 28

Etat magnetique du navire 7

Masses ferromagnetiques 4

Masses permeables 5

Relevage de la deviation 26

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА НЕМЕЦКОМ ЯЗЫКЕ

Anliegender Kurs 14

Deviatiosbestimmung 26

Flinders-Stange 23

Instabilitat 12

Magnetischer Eigenschutz (MES) 28

Richtung des Schiffs 14

Schiffsmagnetkompass 15

(Измененная редакция , Изм . № 1 ).

ПРИЛОЖЕНИЕ

Справочное

ОБЩИЕ ПОНЯТИЯ, ПРИМЕНЯЕМЫЕ В СУДОВОМ МАГНЕТИЗМЕ

Определение

1. Судовая магнитная система

Магнитная система, состоящая из судового железа и технических средств, предназначенных для повышения эффективности эксплуатации судна с использованием магнитного поля.

Примечание. В зависимости от назначения различают судовую магнитную систему курсоуказания, судовую магнитную навигационную систему, судовую магнитную систему компенсации

2. Полный вектор геомагнитного поля

Величина, характеризующая магнитную индукцию стационарного геомагнитного поля в море

3. Плоскость магнитного меридиана

Плоскость, перпендикулярная земной поверхности, проходящая через полный вектор геомагнитного поля в точке наблюдения

4. Намагничение судна

Распределение намагниченности судового железа, обусловленное намагничиванием судна в заданном направлении

5. Коэрцитивность судна

Физическая величина, характеризующая способность судна сохранять остаточный магнетизм пропорционально коэрцитивным силам его намагниченных и перемагниченных частей

6. Магниточувствительный элемент

Элемент, осуществляющий преобразование индукции магнитного поля в. величину, удобную для наблюдения или передачи по линиям связи

7. Магнитный Север

Северная часть плоскости магнитного меридиана

8. Компасный Север

Северная часть плоскости компасного меридиана

Вектор Т напряжённости магнитного поля Земли лежит в плоскости магнитного меридиана и составляет с плоскостью горизонта некоторый угол I . Этот угол называется магнитным наклонением и может изменяться в пределах .

Наряду с указанным, рассматривают проекции Н и Z вектора Т на плоскость горизонта и на местную вертикаль, соответственно. Эти составляющие определяются следующими равенствами:

. (1.1)
На навигационных картах могут наноситься линии равных значений указанных параметров. Изогонами называют линии равных значений магнитного склонения. Линии равных значений магнитного наклонения получили название изоклин . Линии равных значений Н и Z называются изодинамами .

Земное магнитное поле претерпевает медленное годовое изменение, а также достаточно быстрые вариации, обусловленные, например, активизацией процессов на Солнце. Кроме того, на равномерность магнитного поля Земли существенное влияние оказывают местные магнитные аномалии.

магнитомягкие материалы намагничиваются компонентами магнитного поля Земли. Будем представлять судовое и земное магнитные поля в виде соответствующих составляющих X¢,Y¢,Z¢ и X,Y,Z (рис. 4.1) векторов напряженности (или индукции) этих полей по осям системы координат охуz , жёстко связанной с судном. Особенности намагничивания магнитомягких материалов земным магнитным полем заключается в том, что они будучи намагниченными од

Важно!
ной из компонент этого поля, например компонентой Х, создают свое поле, имеющее, общем в случае, все три компоненты, величины которых пропорциональны намагничивающему полю. Таким образом, при намагничивании материала компонентой Х сам намагниченный материал создаёт поле, имеющее со
ставляющие аХ , и , направленные по осям ох , оу и oz, соответственно (Рис. 4.1). Здесь а, d и g – коэффициенты пропорциональности, определяющие величину указанных составляющих в долях намагничивающего поля. Аналогично, материал, намагниченный составляющей Y земного поля, будет создавать собственное поле с компонентами bY, eY и hY , а намагниченный составляющей Z – с компонентами cZ, fZ и kZ .

Учитывая сказанное, результирующие напряженности судового магнитного поля вдоль осей, связанных с судном, можно представить в виде следующих равенств (рис. 1.33):

X¢ = X + aX + bY + cZ + P,

Y¢ = Y + dX + eY +fZ + Q, (4.1)

Z¢ = Z + gX + hY + kZ + R,

где H, Q и R – компоненты магнитного поля, порождаемые постоянным судовым магнетизмом. Уравнения (4.1) получили название уравнений Пуассона , а коэффициенты а…к коэффициентов Пуассона . Полученные уравнения характеризуют структуру судового магнитного поля и являются исходными для проведения различных оценок на практике. Однако для процесса судовождения основной интерес представляет связь параметров судового поля с ошибками МК, т.е. с той девиацией, которая возникает у компаса, установленного в заданном месте на судне. Эта девиация определяется отклонением от плоскости магнитного меридиана горизонтальнойсоставляющей Н¢ (рис. 4.1) судового магнитного поля, образуемой геометрической суммой векторов и , в направлении которой устанавливаются оси магнитов картушки компаса. Найдём соотношения, определяющие указанную связь.

Уравнение девиации

Рассмотрим рис. 4.2, отображающий взаимную ориентацию векторов судового и земного магнитных полей. Как следует из рисунка, девиация магнитного компаса, равная разности магнитного МК и компасного КК курсов судна

=МК – КК , (4.2)

может быть определена следующим равенством:

. (4.3)

В свою очередь, из рисунка следует, что

H¢sin =X¢sin MK + Y¢cos MK, а H¢cos =X¢cos MK – Y¢sin MK. (4.4)

Подставляя в полученные равенства значения X ¢ и Y¢ из уравнений Пуассона (4.1), найдём:

H¢sin =[(1+a)X + bY + cZ + P] sin MK + [(1+e)Y + dX + fZ +Q] cos MK,


H¢cos =[(1+a)X + bY + cZ + P] cos MK – [(1 + e)Y +dX + fZ = Q] sin MK.

В последних равенствах учтём, что

Х=Н cosMK, Y= - H sinMK. (4.6) Тогда получим:

(4.7)

Раскрывая квадратные скобки равенств (4.7), найдём:

(4.8)

Группируя члены по гармоникам, будем иметь:

(4.9)

(4.9)

Обозначим и поделим левые и правые части равенств (4.9) на . В результате получим:

(4.10)

Введём следующие обозначения:

и подставим их в равенства (4.10). В результате будем иметь:

Поделив первое равенство (4.12) на второе, получим искомое выражение для тангенса девиации магнитного компаса:

Это выражение получило название формулы Арчибальда Смита по имени английского учёного Х1Х века. Оно определяет зависимость девиации МК от параметров А¢…E¢ и магнитных курсов судна. Параметры A¢…E¢ получили название коэффициентов девиации.

На практике чаще представляют девиацию МК в функции компасных курсов судна . Для того чтобы получить указанное выражение умножим равенство (4.13) на его знаменатель. В результате будем иметь:

Раскрывая скобки и перенося все члены кроме первого в правую часть равенства, найдём:

Учитывая, что КК=МК - , а 2МК-δ = 2КК+ , окончательно получим выражение для синуса девиации магнитного компаса как функцию компасных курсов судна:

Важно!
Таким образом, определены выражения, характеризующие закон изменения девиации МК и позволяющие дать её численную оценку в различных условиях плавания. Большее распространение для решения указанной задачи получило равенство (4.16). Однако, какое бы равенство не использовалось при выполнении оценок, следует иметь в виду (см. соотношения 4.11), что коэффициенты девиации А¢,D¢ и E¢ практически не зависят от места судна, а коэффициенты B¢ и C¢ изменяются с изменением широты места судна, так как от указанного параметра зависит горизонтальная составляющая Н напряжённости магнитного поля Земли. Из тех же выражений видно, что коэффициенты девиации не зависят от курса судна.

Направления в море возможно определять не только относительно истинного меридиана, но также и относительно магнитного.
Изобразим на плоскости истинного горизонта наблюдателя два меридиана: истинный N И и магнитный N M направление ДП, ОК и направление с судна на береговой ориентир ОМ. Тогда на этом рисунке N И OK - истинный курс судна, а угол N И OM - истинный пеленг. По аналогии считают, что угол N M ОК – магнитный курс (МК), а угол N M OM - магнитный пеленг предмета М. Таким образом, магнитным курсом судна называют угол при центре компаса, отсчитываемый от северной части магнитного меридиана до направления носовой части ДП судна по часовой стрелке от 0 до 360 0 . Точно так же магнитным пеленгом предмета называют угол при центре компаса, отсчитываемый от северной части магнитного меридиана до направления на предмет по часовой стрелке от 0 до 360 0 .

Судовой магнетизм

Стальной набор корпуса судна, обшивка приобретают магнитные свойства с момента постройки. В магнитном поле Земли все продольные, поперечные и вертикальные связи судна намагничиваются неодинаково. Кроме этого, судовое железо в магнитном отношении принято делить на «твердое» и «мягкое». Первое обладает свойствами постоянных магнитов. Постоянный магнетизм, приобретенный судном во время постройки, сохраняется годами. Мягкое в магнитном отношении судовое железо не "задерживает" магнитное состояние надолго; оно обладает индуктивным магнетизмом, зависящим от положения корпуса судна относительно магнитного меридиана. Таким образом, на магнитную стрелку компаса, установленного на судне, оказывают влияние магнитные силы твердого и мягкого в магнитном отношении железа, причем действие их различно. Кроме того, в результате действия магнитных сил, возникающих от магнитного поля, создаваемого различными работающими судовыми агрегатами, контурами с током, стрелка компаса отклоняется от магнитного меридиана.
Вертикальную плоскость, проходящую через полюсы магнитной стрелки компаса на судне, имеющей свободное вращение вокруг вертикальной оси, называют плоскостью компасного меридиана в данной точке судна. Таким образом, компасный меридиан – это воображаемая линия пересечения плоскости истинного горизонта наблюдателя с плоскостью компасного меридиана, проходящего через данную точку на судне. Угол в плоскости истинного горизонта наблюдателя между магнитным и компасным меридианами называют девиацией магнитного компаса. Этот угол отсчитывают от северной части магнитного меридиана к W или к Е от 0 до 180 0 .

Девиацию называют восточной, если северная часть компасного меридиана отклоняется от северной части магнитного меридиана к востоку; если же северная часть компасного меридиана отклоняется от северной части магнитного меридиана к западу, тогда девиацию называют западной. Восточной девиации приписывают знак плюс, западной - знак минус.
Значительная по величине девиация магнитного компаса создает большие неудобства в практической работе. Поэтому на судах уничтожают девиацию путем искусственного создания в центре компаса сил, одинаковых по характеру, равных по величине и противоположных по направлению силам, вызывающим девиацию. Уничтожение девиации магнитного компаса на судне - трудоемкая работа, выполняемая обычно специалистами-девиаторами. После уничтожения девиации у судовых компасов определяют остаточную девиацию, которая обычно не превышает 2-3 0 . Ее находят из наблюдений на восьми равноотстоящих главных и четвертных курсах, а далее по специальным формулам рассчитывают ее значения для компасных курсов через 10 или 15 0 .
Существует много способов определения девиации из наблюдений: по пеленгам небесных светил; по пеленгам отдаленного предмета; по взаимным пеленгам; по створам. Последний способ является наиболее простым и точным. Сущность способа заключается в следующем. Следуя одним из компасных курсов по магнитному компасу, пересекают линию створных знаков, магнитное направление которых известно. В момент пересечения створов отмечают компасный пеленг таковых и, таким образом, получают возможность определить значение девиации для данного компасного курса. Точно так же поступают, пересекая створ на другом компасном курсе. Делая так нужное число раз, значение девиации в каждом случае определяют по формуле:
Δ= МП i - КП i
Физическую сущность того, что девиация имеет различные значения для каждого компасного курса, понять нетрудно, вспомнив тот факт, что магнитное поле судна будет различным в зависимости от расположения его корпуса относительно силовых линий магнитного поля Земли, т. е. от курса судна.
Правилами технической эксплуатации предусмотрено уничтожение девиации и определение остаточной девиации магнитного компаса не реже одного раза в полгода.

Компасные курсы и пеленги

Направления в море возможно определять не только относительно истинного или магнитного меридиана, но также и относительно компасного.
На рисунке выше изображены на плоскости истинного горизонта наблюдателя три меридиана: истинный N и магнитный N M и компасный N к; направление ДП судна ОК и направление с судна на береговой ориентир ОМ. Угол N и OK - истинный курс судна, угол N M OK - магнитный курс судна и угол N K OK - компасный курс судна; угол N и OM - истинный пеленг предмета М, угол N м OM - магнитный пеленг предмета М и угол N K OM - компасный пеленг предмета М. Итак, компасным курсом судна называют угол при центре компаса, отсчитываемый от северной части компасного меридиана до направления носовой части ДП судна по часовой стрелке от 0 до 360 0 . Аналогично компасным пеленгом предмета называют угол при центре компаса, отсчитываемый от северной части компасного меридиана до направления на предмет по часовой стрелке от 0 до 360 0 .
Совместное действие сил земного и судового магнетизма приводит к тому, что магнитная стрелка отклоняется от истинного меридиана на некоторый суммарный угол, называемый поправкой магнитного компаса и обозначаемый ΔМК. По аналогии со склонением и девиацией поправку компаса называют восточной, приписывая ей знак плюс, либо западной (знак минус), в зависимости от того, к востоку или к западу отклонена северная часть компасного меридиана от северной части меридиана истинного.