План урока на тему "Первообразная. Неопределенный интеграл и его свойства

Тип урока: обобщающий.

Задачи:

Обучающие : систематизировать, расширить и углубить знания по данной теме.
Развивающие : способствовать развитию умения сравнивать, обобщать, классифицировать, анализировать, делать выводы.
Воспитывающие : побуждать учащихся само- и взаимоконтролю, воспитывать познавательную активность, самостоятельность, упорство в достижении цели.

Ход урока

І. Организационный момент

Основная и оперативная разминки, скоростной тренажер (элементы технологии Вассермана)

ІІ. Повторение

Учащиеся в парах повторяют теорию по теме и отвечают друг другу на вопросы (приложения 1). Правильный ответ оценивается в один балл.

III. Проверка домашнего задания

Учащиеся в парах обмениваются тетрадями и проводят взаимопроверку. 5 ребят заранее заготавливают по одному примеру на карточках для интерактивной доски из домашнего задания и комментируют их решение.

IV. Аукцион задач

1. Вычислить обьем конуса площадь основания которого равна Р, а высота h.

2. Каую работа надо совершить для того чтобы растянуть пружину на 25 см.

3. Каую работу требуется выполнить чтобы с помощью ракеты тело массой m поднять на высоту h

4. Найдите площадь криволинейной трапеции, ограниченной осью абсцисс, прямыми х=0, х=π и графиком функции у=sin х

5. Вычислить площадь фигуры ограниченной линиями: у=-х², у=0, х=-2

V. Самостоятельная работа

К каждой задаче даны четыре ответа, только один из которых верен. Учащийся должен в специальном бланке поставить номер своего варианта и зачеркнуть номер выбранного им ответа по каждому заданию.

Учитель использует шаблон с отверстиями (отверстия заштрихованны), накладывая который на бланке учащихся устанавливает правильность решения каждой из 4-х задач.

Задание самостоятельной работы в 4-х вариантах в каждом варианте по 4 задачи:

VI. Математическая эстафета

Работа в командах. На последней парте каждого ряда находится листок с 10 заданиями (по два вопроса на каждую парту). Первая пара учащихся, выполнив любые два задания, передает листок впереди сидящим. Работа считается оконченной, когда учитель получается листок с правильно выполненными 10 заданиями. (Приложение 2)
Побеждает та команда, которая раньше всех решит все задания.

VІI. Из истории

Группа учащихся выступают сообщениями о происхождении терминов и обозначений по теме «Первообразная. Интеграл», из истории интегрального исчисления, о математиках, сделавших открытия по данной теме.

VІІІ. Рефлексия

Что усвоили в этой главе?
Чему научились?
Что получили?

1. Мы недавно проходили тему «Производные некоторых элементарных функции». Например:

Производная функции f(х)=х 9 , мы знаем что f′(х)=9х 8 . Теперь мы рассмотрим пример нахождения функции, производная которой известна.

Допустим дана производная f′(х)=6х 5 . Используя знания о производной мы можем определить что это производная функции f(х)=х 6 . Функцию которую можно определить по ее производной называют первообразной.(Дать определение первообразной. (слайд 3))

Определение 1 : Функция F(x)называется первообразной для функции f(x) на отрезке , есливо всех точках этого отрезка выполняется равенство = f(x)

Пример 1 (слайд 4): Докажем что для любого хϵ(-∞;+∞) функция F(x)=х 5 -5х является первообразной для функции f(х)=5х 4 -5.

Доказательство: Используя определение первообразной, найдем производную функции

=( х 5 -5х)′=(х 5 )′-(5х)′=5х 4 -5.

Пример 2 (слайд 5): Докажем что для любого хϵ(-∞;+∞) функция F(x)= неявляется первообразной для функции f(х)= .

Доказать вместе со студентами на доске.

Мы знаем что нахождение производной называют дифференцированием . Нахождение функции по ее производной будем называть интегрированием. (Слайд 6). Целью интегрирования является нахождение всех первообразных данной функции.

Например: (слайд 7)

Основное свойство первообразной:

Теорема: Если F(x)- одна из первообразных для функцииf(х) на промежутке Х, то множество всех первообразных этой функции определяется формулой G(x)=F(x)+C, где С действительное число.

(Слайд 8) таблица первообразных

Три правила нахождения первообразных

Правило №1: Если F есть первообразная для функции f, а G – первообразная для g, то F+G – есть первообразная для f+g.

(F(x) + G(x))’ = F’(x) + G’(x) = f + g

Правило №2: Если F – первообразная для f, а k – постоянная, то функция kF – первообразная для kf.

(kF)’ = kF’ = kf

Правило №3: Если F – первообразная для f, а k и b– постоянные (), то функция

Первообразная для f(kx+b).

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачами, которые мы сейчас относим к задачам на вычисление площадей.Многие значительные достижения математиков Древней Греции в решении таких задач связаны с применением метода исчерпывания, предложенным ЕвдоксомКнидским. С помощью этого метода Евдокс доказал:

1. Площади двух кругов относятся как квадраты их диаметров.

2. Объём конуса равен 1/3 объёма цилиндра, имеющего такие же высоту и основание.

Метод Евдоксабыл усовершенствован Архимедом и были доказаны такие вещи:

1. Вывод формулы площади круга.

2. Объем шара равен 2/3 объема цилиндра.

Все достижения были доказаны великими математиками с применением интегралов.

ОТКРЫТЫЙ УРОК ПО ТЕМЕ

« ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

СВОЙСТВА НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА».

2 часа.

11 а класс с углубленным изучением математики

Проблемное изложение.

Проблемно – поисковые технологии обучения.

ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

СВОЙСТВА НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА.


ЦЕЛЬ УРОКА:

Активизировать мыслительную деятельность;

Способствовать усвоению способов исследова-


- обеспечить более прочное усвоение знаний.

ЗАДАЧИ УРОКА:


  • ввести понятие первообразной;

  • доказать теорему о множестве первообразных для заданной функции (применяя определение первообразной);

  • ввести определение неопределенного интеграла;

  • доказать свойства неопределенного интеграла;

  • отработать навыки использования свойств неопределенного интеграла.

ПРЕДВАРИТЕЛЬНАЯ РАБОТА:


  • повторить правила и формулы дифференцирования

  • понятие дифференциала.
ХОД УРОКА
Предлагается решить задачи. Условия задач записаны на доске.

Учащиеся дают ответы по решению задач 1, 2.

(Актуализация опыта решения задач на использование дифферен-

цирования).


1. Закон движения тела S(t) , найти его мгновенную

скорость в любой момент времени.


- V(t) = S(t).
2. Зная, что количество электричества, протекающего

через проводник выражается формулой q (t) = 3t - 2 t,

выведите формулу для вычисления силы тока в любой

момент времени t.


- I (t) = 6t - 2.

3 . Зная скорость движущегося тела в каждый момент вре-

мени, найти закон его движения.


  1. Зная, что сила тока проходящего через проводник в лю-
бой момент времени I (t) = 6t – 2 , выведите формулу для

определения количества электричества, проходящего

через проводник.
Учитель: Возможно ли решить задачи № 3 и 4 используя

имеющиеся у нас средства?

(Создание проблемной ситуации).
Предположения учащихся:
- Для решения этой задачи необходимо ввести операцию,

обратную дифференцированию.

Операция дифференцирования сопоставляет заданной

функции F (x) ее производную.


F (x) = f (x).

Учитель: В чем заключается задача, дифференцированию?


Вывод учащихся:

Исходя из данной функции f (x) , найти такую функцию

F (x) производной которой является f (x) , т.е.
f (x) = F(x) .


Такая операция называется интегрированием, точнее

неопределенным интегрированием.


Раздел математики, в котором изучаются свойства операции интегрирования функций и ее приложения к решению задач физики и геометрии, называют интегральным исчислением.
Интегральное исчисление _ это раздел математического анализа, вместе с дифференциальным исчислением, оно составляет основу аппарата математического анализа.

Интегральное исчисление возникло из рассмотрения большого числа задач естествознания и математики. Важнейшие из них - физическая задача определения пройденного за данное время пути по известной, но быть может переменной скорости движения, и значительно более древняя задача – вычисления площадей и объемов геометрических фигур.


В чем состоит неопределенность этой обратной операции предстоит выяснить.
Введем определение. (кратко символически записывается

на доске).


Определение 1. Функцию F (x) , заданную на некотором промежут

ке X, называют первообразной для функции задан-

ной на том же промежутке, если для всех x X

выполняется равенство

F(x) = f (x) или d F(x) = f (x) dx .
Например. (x) = 2x, из этого равенства следует, что функция

x является первообразной на всей числовой оси

для функции 2x.

Используя определение первообразной, выполните упражнение


№ 2 (1,3,6) . Проверьте, что функция F является первообраз-

ной для функции f, если


1) F (x) =
2 cos 2x , f (x) = x - 4 sin 2x .

2) F (x) = tgх - cos 5x , f (x) =
+ 5 sin 5x.

3) F (x) = x sin x +
, f (x) = 4x sinx + x cosx +
.

Решения примеров записывают на доске учащиеся, комменти-

руя свои действия.

Является ли функция х единственной первообразной

для функции 2х?

Учащиеся приводят примеры

х + 3 ; х - 92, и т.д. ,


Вывод делают сами учащиеся:
любая функция имеет бесконечно много первообразных.
Всякая функция вида х + С, где С – некоторое число,

является первообразной функции х.


Теорема о первообразной записывается в тетради под диктовку

учителя.


Теорема. Если функция f имеет на промежутке первообраз-

ную F, то для любого числа С функция F + C также

является первообразной для f . Иных первообразных

функция f на Х не имеет.


Доказательство проводят учащиеся под руководством учителя.
а) Т.к. F - первообразная для f на промежутке Х, то

F (x) = f (x) для всех х Х.

Тогда для х Х для любого С имеем:

(F (x) + C) = f (x) . Это значит, что F (x) + C - тоже

первообразная f на Х.

б) Докажем, что иных первообразных на Х функция f

не имеет.

Предположим, что Ф тоже первообразная для f на Х.

Тогда Ф(x) = f (x) и потому для всех х Х имеем:

Ф (x) - F (x) = f (x) - f (x) = 0, следовательно

Ф - F постоянна на Х. Пусть Ф (x) – F (x) = C , тогда

Ф (x) = F (x) + C, значит любая первообразная

функции f на Х имеет вид F + C.

Учитель: в чем заключается задача отыскания всех первообраз-

ных для данной функции?

Вывод формулируют учащиеся:

Задача отыскания всех первообразных, решается

отысканием какой-нибудь одной: если такая первооб-

разная найдена, то любая другая получается из нее

прибавлением постоянной.


Учитель формулирует определение неопределенного интеграла.
Определение 2. Совокупность всех первообразных функции f

называют неопределенным интегралом этой

функции.
Обозначение.
; - читается интеграл.
= F (x) + C, где F – одна из первообразных

для f , С пробегает множество

действительных чисел.

f - подынтегральная функция;

f (x)dx - подынтегральное выражение;

х - переменная интегрирования;

С - постоянная интегрирования.
Свойства неопределенного интеграла учащиеся изучают по учебнику самостоятельно и выписывают их в тетрадь.

.

Решения учащиеся записывают в тетрадях, работающий у доски

Тема урока: «Первообразная и интеграл» 11 класс (повторение)

Тип урока: урок оценки и коррекции знаний; повторения, обобщения, формирования знаний, умений, навыков.

Девиз урока : Не стыдно не знать, стыдно не учиться.

Цели урока:

  • Обучающие: повторить теоретический материал; отработать навыки нахождения первообразных, вычисления интегралов и площадей криволинейных трапеций.
  • Развивающие: развивать навыки самостоятельного мышления, интеллектуальные навыки (анализ, синтез, сравнение, сопоставление), внимание, память.
  • Воспитательные: воспитание математической культуры учащихся, повышение интереса к изучаемому материалу, осуществление подготовки к ЕНТ.

План конспект урока.

I. Организационный момент

II. Актуализация опорных знаний учащихся.

1.Устная работа с классом на повторение определений и свойств:

1. Что называется криволинейной трапецией?

2. Чему равна первообразная для функции f(х)=х2.

3. В чем заключается признак постоянства функции?

4. Что называется первообразной F(х) для функции f(х) на хI?

5. Чему равна первообразная для функции f(х)=sinx.

6. Верно ли высказывание: «Первообразная суммы функций равна сумме их первообразных»?

7. В чем заключается основное свойство первообразной?

8. Чему равна первообразная для функции f(х)=.

9. Верно ли высказывание: «Первообразная произведения функций равна произведению их

Первообразных»?

10. Что называется неопределенным интегралом?

11.Что называется определенным интегралом?


12.Назовите несколько примеров применения определенного интеграла в геометрии и физике.

Ответы

1. Фигуру, ограниченную графиками функций y=f(x), у=0, х=а, х=b, называют криволинейной трапецией.

2. F(x)=x3/3+С.

3. Если F`(x0)=0 на некотором промежутке, то функция F(x) – постоянная на этом промежутке.

4. Функция F(x) называется первообразной для функции f(x) на заданном промежутке, если для всех х из этого промежутка F`(x)=f(x).

5. F(x)= - cosx+C.

6. Да, верно. Это одно из свойств первообразных.

7. Любая первообразная для функции f на заданном промежутке может быть записана в виде

F(x)+C, где F(x) – одна из первообразных для функции f(x) на заданном промежутке, а С –

Произвольная постоянная.

9. Нет, не верно. Нет такого свойства первообразных.

10. Если функция у=f(x) имеет на заданном промежутке первообразную у= F(x), то множество всех первообразных у= F(x)+С называют неопределенным интегралом от функции у=f(x).

11. Разность значений первообразной функции в точках b и a для функции у = f (x ) на промежутке [ a ; b ] называется определенным интегралом функции f(x) на промежутке [ a ; b ] .

12..Вычисление площади криволинейной трапеции, объемов тел и вычисление скорости тела в определенный промежуток времени.

Применение интеграла. (дополнительно записать в тетрадях)


Величины


Вычисление производной


Вычисление интеграла


s – перемещение,

А – ускорение

A(t) =


A - работа,

F – сила,

N - мощность


F(x) = A"(x)

N(t) = A"(t)


m – масса тонкого стержня,

Линейная плотность


(x) = m"(x)


q – электрический заряд,

I –сила тока


I(t) = q(t)


Q – количество теплоты

С - теплоемкость


c(t) = Q"(t)


Правила вычисления первообразных


- Если F – первообразная для f, a G - первообразная для g, то F+G есть первообразная для f+g.

Если F – первообразная для f, a k – постоянная, то kF есть первообразная для kf.

Если F(x) –первообразная для f(x), ak, b – постоянные, причем k0, то есть есть первообразная для f(kx+b).

^ 4) - формула Ньютона-Лейбница.

5) Площадь S фигуры, ограниченной прямыми x-a,x=b и графиками непрерывных на промежутке функций и таких, что для всех x вычисляется по формуле

6) Объемы тел, образованных вращением криволинейной трапеции, ограниченной кривой y = f(x), осью Ox и двумя прямыми x = a и x = b вокруг осей Ох и Оу, вычисляются соответственно по формулам:

Найдите неопределенный интеграл: (устно)


1.


2.


3.


4.


5.


6.


7.

Ответы:


1.


2.


3.


4.


5.


6.


7.

III Решение заданий с классом


1. Вычислите определенный интеграл: (в тетрадях, один учащийся на доске)

Задачи по рисункам с решениями:

№ 1. Найти площадь криволинейной трапеции, ограниченной линиями y= x3, y=0, x=-3, x=1.

Решение.

-∫ х3 dx + ∫ x3 dx = - (x4/4) | + (x4 /4) | = (-3)4 /4 + 1/4 = 82/4 = 20,5

№3. Вычислите площадь фигуры, ограниченной линиями у=x3+1, у=0, x=0

№ 5. Вычислите площадь фигуры, ограниченной линиями у= 4 -х2, у=0,

Решение. Сначала построим график, чтобы определить пределы интегрирования. Фигура состоит из двух одинаковых кусочков. Вычисляем площадь той части, что справа от оси у, и удваиваем.

№ 4. Вычислите площадь фигуры, ограниченной линиями у=1+2sin x, у=0, x=0, x=п/2

F(x) = x - 2cosx; S = F(п/2) - F(0) = п/2 -2cos п/2 - (0 - 2cos0) = п/2 + 2

Вычислите площадь криволинейных трапеций, ограниченных графиками известных вам линий.

3. Вычислите по рисункам площади заштрихованных фигур (самостоятельная работа в парах)

Задание: Вычислите площадь заштрихованной фигуры

Задание: Вычислите площадь заштрихованной фигуры

III Итоги урока.

а) рефлексия: -Какие выводы от урока вы сделали для себя?

Есть ли каждому над чем поработать самостоятельно?

Полезен ли был для вас урок?

б) анализ работы учащихся

в) Дома: повторить, свойства все формулы первообразных, формулы нахождения площади криволинейной трапеции, объемов тел вращения. № 136 (Шыныбеков)

Муниципальное казенное общеобразовательное учреждение

средняя общеобразовательная школа №24 р. п. Юрты

Иркутской области.

Учитель Трушкова Наталья Евгеньевна.

Нестандартные формы закрепления, проверки знаний и умений учащихся по математике.

Национальная образовательная инициатива «Наша новая школа» предполагает применение в образовательном процессе индивидуального подхода, использование таких образовательных технологий и программ, которые развивают у каждого ребёнка интерес к процессу обучения. Решение этих задач требует обеспечения компетентностного подхода в обучении, взаимосвязи академических знаний и практических умений.

Огромные возможности для активизации познавательного интереса учащихся имеют уроки обобщения и систематизации знаний, интегрированные уроки, нетрадиционные уроки.

Важный вопрос, который волнует каждого учителя,- как сделать уроки математики интересными, нескучными и запоминающимися? Предлагаемый материал помогает решить эту задачу, призван помочь в организации нестандартных уроков. На уроке прослеживается связь теории и практики, сознательности и активности, положительной мотивации и благоприятного эмоционального фона. Эти принципы предполагают создание атмосферы сотрудничества между учителем и учащимися, между самими учащимися, стимулирование интереса учащихся.

Важным звеном процесса обучения математике является контроль знаний и умений школьников. От того, как он организован, на что нацелен, существенно зависит эффективность учебной работы. Поэтому в своей практике я уделяю серьёзное внимание способам организации контроля, его содержанию.

Урок-зачет (тематический)

по теме «Первообразная и интеграл». 11 класс. (2 урока).

Тема: Первообразная и интеграл.

Цели:

1. Проверить теоретические знания учащихся по теме.

2. Проверить умения, навыки учащихся по нахождению первообразной, вычислению площади криволинейной трапеции, вычислению интегралов.

3. Выявить пробелы в знаниях учащихся с целью их устранения перед контрольной работой.

4. Воспитывать у учащихся ответственное отношение к учёбе, ответственность перед товарищами, сопереживание.

Универсальные учебные действия (УУД), которые будут формироваться в ходе урока

Личностные:

Сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками;

Сформированность ответственного отношения к учению;

Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

Слушать и понимать других;

Строить речевое высказывание в соответствии с поставленными задачами;

Коммуникативные:

Согласованно работать в группе:

Контроль оценки и действий партнёра;

С достаточной точностью выражать свои мысли.

Регулятивные:

Контроль (сличение с заданным эталоном).

Коррекция и оценка знаний и способов действий.

Оборудование:

а) компьютер, мультимедийный проектор, экран, слайды.

б) карточки;

в) раздаточные доски;

г) мел, тряпочки;

д) жетоны;

е) указатели столов.

Ход урока.

    Сообщение темы и целей урока (тема урока записана на доске).

    Сообщение учителем итогов подведения зачёта (таблица записана на доске).

Класс работает по группам 4 – 5 человек (столы сдвинуты по два).

    Представитель каждой группы выходит к столу учителя и берет теоретический вопрос (карточки с вопросами перевернуты). Группа готовится к ответу таким образом, чтобы любой ученик группы мог ответить на этот вопрос у доски.

На подготовку вопроса теории – 10 минут. По истечении этого времени каждой группе даются на подносах жетоны, где на одном из них стоит знак «+». Ученики по берут жетоны. Тот ученик, которому достался жетон с «+», идёт отвечать к доске на вопрос теории.

Группы готовят ответы на теорию на раздаточных досках, которые затем используют при ответе.

Каждый теоретический вопрос оценен баллом «3», кроме карточки №5. За ответ по карточке №5 дается 5 баллов.

Одна группа отвечает, остальные слушают и рецензируют ответ, дают оценку ответу (за 1 балл).

4.Проверка теории по карточке №1. Слайд 1.

Проверка теории по карточке №2. Слайд 2.

(за правильный ответ на примеры – 1 балл).

Проверка теории по карточке №3. Слайд 3.

(за правильный ответ на примеры – 1 балл).

Проверка теории по карточке №4. Слайд 4.

(за правильный ответ на примеры – 1 балл).

Проверка теории по карточке №5. Слайд 5.

(за правильный ответ на примеры– 1 балл).

После проверки теоретического материала объявляются итоги.

Во время перемены столы расставляются обычным образом.

1 ученик у доски:

После этого учащимся раздаются задания по вариантам (за каждое правильно решенное задание – 2 б); всего – 10 баллов.

Вариант 1.

а) f(x)=2 3; б) f(x)= +x 2 на (0;).

Вариант 2.

    Найдите первообразную для функции:

а) f(x)= -2 ; б) f(x)= - x 2 на (0;).

Те учащиеся, которые быстро решат все задания, получают дополнительное задание (2 примера) по вариантам. (Каждый пример – 3 балла).

После того, как все карточки сданы на проверку, у доски решается задание (1 ученик у доски), остальные решают в рабочих тетрадях.

Если останется время:

1 вариант

2 вариант

Вычислите площадь фигуры, ограниченной линиями у= -х 2 +3; у=2х.

Вычислите площадь фигуры, ограниченной линиями у= -х 2 +2;

Вычислите интегралы:

Объявляются итоги по зачету.

Для подсчета баллов удобно сделать таблицу:

упражнения

Оценка теории

Работа по вариантам

по 2б.(макс.10б.)

Дополнительные карточки

Дополнительные задания по 3 б.

Попова Е.

2 вариант

Такая же таблица делается для 1 варианта. Для подсчёта баллов привлекаются учащиеся другого 11 класса.